
Software Engineering
Made Easy

Marco Gaehler

Software Engineering Made
Easy

Marco Gaehler

This book is for sale at http://leanpub.com/SEmadeeasy

This version was published on 2024-06-27

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2024 Marco Gaehler

http://leanpub.com/SEmadeeasy
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Contents

1. Introduction to Software Engineering 1
Getting started . 1

2. 2

3. One sentence summary 3

4. The short story behind this book 7
Thanks to . 8

5. Preface . 10
Who this book is for . 13
Writing this book . 14
A word about Copilot . 14

6. Software Engineering . 16
The Life of a Software Engineer 17
Writing correct code . 19
Cleaning up code . 20
Writing code for a purpose 21
The five rules of software engineering 21

7. Good code: a list of rules 23
The Zen of Python . 26

8. Understandable code . 28
How Humans Think . 28

CONTENTS

Spaghetti code . 29
Examples . 30
Copilot . 35

9. Single Responsibility Principle 36
Do not Repeat Yourself . 36
Advantages of the SRP . 39
Drawbacks of the SRP . 41

10. Levels of abstraction . 43
Real world example . 43
Programming Example . 45
The Abstraction Layers . 48
Summary . 52

11. Interfaces . 53
Real-world Interfaces . 53
Code Interfaces . 54
APIs . 56
Orthogonality . 60
Copilot . 62

12. Naming . 64
The importance of Names 64
How to name things . 66
Naming Antipatterns . 70
Copilot . 71

13. Functions . 73
Do one thing only . 73
Temporal Coupling . 78
Number of Arguments . 81
Output arguments . 83
Return Values . 84
Summary . 86
Copilot . 86

CONTENTS

14. Classes . 88
Data Classes and Structs 88
Private or Public . 89
Different Kinds of Classes 91
Functions vs. Methods . 101
Constructors and Destructors 103
Getter and Setter Methods 104
Coupling and Cohesion . 109
Static Expression . 112
Drawbacks of Classes . 113
Conclusions . 114
Copilot . 115

15. Inheritance . 117
Two Types of Inheritance 117
Drawbacks of Inheritance 118
Advantages of Inheritance 123
Inheritance and Composition 123
Conclusions . 125

16. Data Types . 126
Lists . 126
Enums . 128
Booleans . 131
Strings . 137
Dictionaries . 141
Trees . 143
Pointers . 143

17. Properties of Variables 145
Compile-time constant . 145
Runtime Constant . 146
Mutable Variables . 146
Member Variables . 148
Static Variables . 149
Global Variables . 149

CONTENTS

Comparison of Variable Properties 151

18. Introduction to Testing 154
A short story about tests 154
Test Example . 157
General Thoughts about Tests 161
Number of test cases . 165
Stages of a Test . 167
Problematic Tests . 173
The Beyoncé Rule . 178
Exceptions and Tests . 178
Not Automatable Tests . 178

19. Types of Tests . 180
Unit Tests . 181
Functional Tests . 189
Other Kinds of Tests . 191
When to run Tests . 193
Who should write Tests? 194
The Testing Pyramid . 196

20. Writing Better Code with Tests 198
Unit Tests . 198
Integration and Functional Tests 199
Testing Existing Code . 200
Assertions . 202
Test Driven Development 203
Stubs, Fakes, and Mocks 210
Summary . 218
Copilot . 219

21. SOLID principles . 221
Single Responsibility Principle 221
Open Closed Principle . 222
Liskov Substitution Principle 224
Interface Segregation Principle 225

CONTENTS

Dependency Inversion Principle 229
Summary . 232

22. Software Engineering Principles 233
Divide and Conquer . 233
Increase Cohesion . 233
Reduce coupling . 234
Increase abstraction . 234
Increase Reusability . 235
Design for flexibility . 235
Anticipate Obsolescence 236
Design for Testability . 236
Pay Now or Pay More Later 237

23. Programming Paradigms 239
Object-Oriented Programming 240
Procedural programming 240
Functional Programming 242
Conclusions . 243
Copilot . 244

24. Programming Languages 245
Java and C++ . 246
Existing Programming Languages 247
Code Examples . 248
Python . 249
C++ . 251
Copilot . 255

25. Physical Laws of Code 256
Entropy . 256
Correlation . 256
Quality . 257

26. Bugs, Errors, Exceptions 261
Syntax Errors . 261

CONTENTS

Bugs . 262
Exceptions . 267

27. Complexity . 271
Complexity of Code . 271
Estimating complexity . 272
Single line complexity . 274
Black magic code . 276

28. Dependencies . 277
The Early Days . 277
The dependency graph . 277
Breaking up Dependencies 278
Circular Dependencies . 279

29. Decoupling . 282

30. Software Architecture 284
The end of Architecture 285
Designing Interfaces . 285
Separate Libraries . 286

31. Design Patterns . 288
Factory . 288

32. Domain Driven Design 290
Ubiquitous Language . 290
The Domain Model . 292
Domain Specific Language 296
Domain Boundaries . 297
Building Blocks of DDD 300

33. 3rd party software . 310

34. Refactoring Fundamentals 313
There will be change . 313
Don’t Let Your Code Rot 313

CONTENTS

Levels of Refactoring . 317
When to Refactor . 320
What to Refactor . 321
Refactoring Process . 322

35. Refactoring Techniques 323
Where to start . 324
Breaking classes . 324
Renaming . 334
Scratch refactoring [WELC p. 212] 334
Extract function . 335
Dependency Injector . 337
Copilot . 339

36. Refactoring Legacy Code 342
No Useful Interfaces . 344
No Tests . 344
Extremely Long Functions 345
Seams . 346
Sketches . 349
How do I get the Code under Test? 349
Sprout Method . 350

37. Performance Optimization 354
No Optimization Needed 354
Optimization Maybe Needed 355
Optimizing Certainly Needed 356

38. Comments . 358
Bad comments . 358
Useful comments . 367
Commenting magic numbers 369
Summary . 370
Copilot . 370

39. Logging . 372

CONTENTS

40. Data files . 374
CSV . 374
JSON . 376
XML . 378
HDF5 . 381
Databases . 383
Custom file format . 385

41. Setting up a project . 386
Project Folder . 387

42. Tools . 390
Version control software 390
Command line . 392
IDE . 393
Continuous Integration . 393
Debugger . 394
Profiler . 395
Formatter . 395
Code quality checker . 396
Pip, cmake . 397
Ticketing system . 397
Wiki . 398
Docstring . 398

43. Working in teams . 399
Team structure . 399
Developers work . 401
Communication . 402
Working with customers 403

44. Code review . 405
Drawbacks . 406
Conclusions . 407

45. Agile . 409

CONTENTS

Problems of Waterfall . 409
Agile was born . 410
Work planning . 411
Quality Assurance . 412
The Iron Cross . 413
Sprints . 414
Becoming agile . 415

46. Requirements Engineering 417
Stakeholders . 417
Goals, Context and Scope 418
Use-Case Model . 421

47. Planning . 424
Planning code . 426

48. DevOps . 428
The early 2000s . 428
Benefits of DevOps . 430

49. Mental health . 431

50. Hiring and getting hired 434
Hiring . 434
Getting hired . 435

51. Examples . 437
Apple pie . 437
Paint . 440

52. About Copilot . 445
Copilot and this book . 446
Issues . 446
Copilot and the future . 448

53. Further reading . 449

54. Outlook . 451

55. Frequently used Abbreviations 453

1. Introduction to
Software Engineering

This book is currently undergoing revisions. Feedback is
highly valued. Please send me the commented PDF to
marco.gaehler@gmx.ch. It is advisable to submit many small
changes rather than a single large one. Feedback may include
precise recommendations for enhancement or general reflections.
I welcome broader feedback. Tipos are getting fixed using some
AI tool, so don’t worry about them.

Getting started

This is a book about software engineering, similar to “Clean Code”
by Robert C. Martin and “The Pragmatic Programmer” by Thomas
& Hunt. The current document is only a rough draft, though it’s
making progress. The initial chapters feel already quite good, the
latter portion of the book requires significant revision.

2.

3. One sentence
summary

// mention which part the chapters are in?? // fix the whole
enumeration

Parts: Part 1: First things first 6-12 Part 2: Components of Code
13-17 Part 3: Testing 18-20 Part 4: Design Principles 21-22 Part 5:
Programming 23-29 Part 6: High level design 30-32 Part 7: Existing
code 33-36 Part 8: Miscelaneous 37-41 Part 9: Collaborating 42-50
Part 10: Final remarks 51-54

1. .
2. .
3. .
4. .
5. Preface: My personal story behind this book.
6. Software Engineering: We destill some basic rules what

Softwar Engineering is about.
7. Good Code, an overview: A short list that summarizes the

most important points of this book.
8. Understandable Code: An attempt to explain what we under-

stand and what we don’t understand.
9. The Single Responsibility Principle (SRP): We discuss why it

is of utmost importance that every piece of code does exactly
one thing.

10. Levels of Abstraction: Many very complex objects may be
combined to form a new object that is fairly easy to compre-
hend.

11. Interfaces: What is an interface? And how do I design a good
interface?

3. One sentence summary 4

12. Naming: Naming is the most difficult part of this book
because there are so many rough rules but no clear cut
answers.

13. Functions: As discussed in the chapter on the SRP, functions
should do exactly one thing. Therefore, they should be short.

14. Classes: We learn how to structure classes beyond the old
getter and setter non-sense.

15. The utilization of inheritance is generally discouraged due to
its tendency to result in poor code quality.

16. Data Types: What types of primitive data are there? And
why should you be cautios with using booleans and strings?

17. Properties of Variables: There are additional properties of
variables primarily determine the scope within which they
can be utilized and whether they are mutable or immutable.

18. Testing: Testing is of utmost importance to keep your code
correct over the test of time.

19. Types of Tests: We discuss unit tests, and functional tests.
20. Writing better code with tests: Having tests forces you to

write better code as tests require good interfaces.
21. SOLID principles: Explaining the SOLID principles that

Robert C. Martin (Uncle Bob) came up with.
22. Software Engineering principles: Some general software en-

gineering principles from [https://youtu.be/XQzEo1qag4A]
23. Programming Paradigms: We briefly discuss the differences

between object oriented (OO), procedural, and functional
programming.

24. Programming Languages: A brief overview on the most
commonly used programming languages.

25. Physical Laws of Code: Surprisingly, code obeys some phys-
ical laws as well.

26. Bugs, Errors, Exceptions: A discussion how you should deal
with and prevent bugs.

27. Complexity: There is always a certain amount of complexity
in a certain problem that will be reflected in the code.

3. One sentence summary 5

28. Dependencies: How do you deal with dependencies between
files and code snippets?

29. Decoupling: ? // remove chapter
30. Software Architecture: A brief overview what software ar-

chitecture is about.
31. Design patterns: We look the factory pattern to see what

design patterns are.
32. Domain Driven Design: An introduction to Domain Driven

Design (DDD).
33. 3rd party software: How to deal with 3rd party software.
34. Refactoring Fundamentals: Refactoring is about keeping your

code in shape.
35. Refactoring techniques: …?
36. Refactoring Legacy Code: There are a whole lot of problems

with projects that don’t follow the rules explained in this
book.

37. Performance Optimization: Don’t optimize until the very end
of a project.

38. Comments: Replace comments with code whenever possible.
39. Logging: For single threaded codewhere the user uses only an

API, logging is not needed. On the other hand, logging might
be needed for distributed systems where race conditions may
occure.

40. Data files: If you store data, there may be better file formats
than csv files.

41. Setting up a project: If you start with a new project, you
should first get the whole infrastructure right.

42. Tools: An overview of the most important tools that you
should use, starting with Git.

43. Working in teams: Working in teams has some advantages
and drawbacks.

44. Code review: Let your code be reviewed by others.
45. Agile: Agile is a way to organize your work in a team and

offers an alternative to waterfall.

3. One sentence summary 6

46. Requirements Engineering: What should you actually pro-
gram?

47. Planning: Before you start coding, you should roughly plan
what you are going to do.

48. DevOps: DevOps is considered the way to go regarding the
organization of your projects.

49. Mental Health: Working in IT can be very stressful. Here are
some tips how to deal with it.

50. Hiring and getting hired: How to get a job as a Software
Engineer.

51. Examples: // ? rewrite chapter?
52. About Copilot: A short overview of Copilot. // move to the

introduction?
53. Outlook: Some personal advice and wishes for your future.
54. Abbreviations: Abbreviations used in this book.
55. Index: The index of this book.

Chapters to work on:

• Decoupling (Remove?)
• Software Architecture (Ask Volker?)
• Domain Driven Design (Ask who?)
• Examples (Rewrite?)
• About Copilot (who knows anything about Copilot?)
• Requirements Engineering (Felix)

4. The short story behind
this book

“Software development is a journey. Every bug fixed is a lesson
learned.” - ?

I studied physics at ETH Zurich, Switzerland. And I worked as
a teacher for a few years before I decided to switch to software
engineering. I worked for a few years as a software engineer at
Zurich Instruments, a company that develops electronic devices
used in quantum computing. There, I was mostly busy developing
software for quantum computers.

At the beginning of my time there, I was still a novice in software
engineering, but I quickly picked up a lot of new skills. At the
same time, I was in touch with many PhD students and realized
how poorly written their code was. This is when I came up with
the idea to write a book about software engineering. I wanted to
write a book to myself at the end of my studies. When I knew the
basics of programming, but nobody told me how to structure my
code properly. I wanted to write a book that explains everything I
learned about good programming practices during the few years
I spent in industry. Such that every person with a little bit of
programming knowledge can improve their skills to a reasonable
level by reading this book. That being said, reading this book will,
of course, not be enough to become a proficient software engineer.
It also takes a lot of practice and continuous learning.

I wasn’t really sure where this book would take me. In the
beginning, I didn’t even think this would become a real book. I
was just writing down my thoughts and ideas. Things that I once
thought of, but couldn’t find any literature about or only scattered
over many different places. My English is fairly poor, and I was

4. The short story behind this book 8

never really good at writing essays in school. But as I was reading
other books, I got some more inspiration on what to write. And as
this text got longer and I got some encouraging feedback from my
reviewers. Therefore, I decided to publish this book.

The two books which inspired me the most are the best sellers
[Clean Code] by Robert C. Martin and [The Pragmatic Program-
mer] by Andrew Hunt and David Thomas. I like how they both
give some general advice how to write better code. But, of course,
I didn’t want to make a copy of these books. Even though there
are some similarities, especially with Clean Code. I tried hard to
find out why I liked these books and what could be improved on.
For instance the code examples given in these books. On one hand,
The Pragmatic Programmer has no code at all, meanwhile the Clean
Code frequently has code which is too long to understand.

Therefore, I tried to write a book that has useful topics and at the
same time some concrete code examples. I really tried to keep the
code examples as short as possible in order to make them easy to
understand. Always imagine this little piece of code being inside a
huge codebase.

If you like long functions and classes, I have to warn you that I
don’t them too much. I prefer to structure code with many short
functions and very few, small classes. Classes may be useful tools,
but they are frequently abused for writing bad code using the
member variables as “mini-globals” [The Art of Readable Code].
Instead, classes should in my opinion usually do little more than
organizing data, as done in C-style structs.

I hope you’ll enjoy reading this book, Marco Gähler

Thanks to

There are some people who read through this book and were very
helpful in giving me feedback. I want to thank them here:

4. The short story behind this book 9

• Volker Obermeit
• Rafael Gort
• Marios Karakasis
• Felix Gähler
• Hans Märki
• Bernhard Brodowsy
• Claudia Gähler
• Barbara Schneider
• Fabian Mäser
• … you?

Furthermore I’d like to thank Uwe Schmitt and the Research
Software Engeneering (RSE) community in Zurich.

I would also thank to Martin Fowler, Robert C. Martin, and Dave
Thomas, amoung others, for their moral support and their great
books. Though, little surprisingly, they didn’t have time to read
through this book.

Copilot and Wordvice helped me a lot writing this book. Copilot
at times gave me some inspiration on how to finish a sentence
and Wordvice helped me out with improving the language. When
revising this text, I just realized once again how poor my English
was.

I would also like to thank the team of Pearson Germany for their
support. Most notably Birger Peil.

5. Preface
“I have been consistently disappointed by the quality of CS [com-
puter science] graduates. It’s not that the graduates aren’t bright or
talented, it’s just that they haven’t been taught what programming
is really all about.” - Robert C. Martin

In 2007, I had my first semester at university. It was the first
time I learned programming. We learned C++ and I found it very
confusing. Especially things like plain old arrays, pointers, const
expressions, etc. I struggled to understand these concepts. They
just felt wrong. There were numerous unresolved questions about
writing the code correctly, and I didn’t know where to get good
advice. I passed the exam, but I was somewhat dissatisfied.

Three years later, I took a course on computational physics. There,
I had to write slightly bigger programs. It worked, but I struggled a
lot. The code was dreadful, and I knew it. But I didn’t know how to
make it any better. Changing things was hard, and I learned how
to use a debugger. I still have all my university files, but I haven’t
dared to look at this code ever since. Already thinking about it
makes me shudder.

After my studies, I wanted to improve my programming skills, so
I read the book “Effective Modern C++” by Scott Meyers. A great
book. But it wasn’t made for me at that time. It deals with many
details of C++ and I barely understood anything because I lacked
the necessary background knowledge. The book was too advanced
for me.

A few years later, I decided to give programming another shot. I
found a company that was looking for people with programming
and physics expertise. So, I thought I might have a chance, despite
my poor programming skills. At the job interview, I was asked a

5. Preface 11

few very technical (and in hindsight not particularly useful) C++
questions, and I could answer most of them thanks to the book I
read. I got the job.

In the beginning, I struggled a little. I was overwhelmed by the
amount of code. I didn’t know which IDE to use, and the build
process I used was flawed. You name it. Still, I received some
good feedback from my boss. A few months later, I had my first
significant feature implemented. It also had automated tests, and
the code was much cleaner than similar features. Another month
later, I implemented my second feature. Everyone in the company
expected this task to be very challenging, but I found a neat way to
implement it.

My boss wrote most of the code, and the success of the company
was largely dependent on his efforts. He knew everything, but I
hardly ever understood a thing when he explained his code. In
many topics, I lacked the necessary background information.

Around that time, the company hired additional software devel-
opers. Especially one of them made a huge impression on me. I
could ask him almost anything, and he was able to provide me
with a simple answer. He understood the concepts on which our
code was based, enabling him to grasp the fundamental structure of
our code and organize the remaining elements. But it was also the
way he worked. He wrote small functions covered with automated
tests. He was also refactoring the code. One Monday morning, he
arrived at the office. He opened a massive merge request to refactor
some code across the entire codebase. He broke down this huge and
widespread problem into small chunks and wrote tests for the new
implementation. He opened my eyes. He made me realize that the
way he worked was so much better. So muchmore structured. This
was proper engineering. Real software engineering.

There is so much I learned in those few years. And the basic
principles are so easy to learn. You just need someone to teach
you. This book is what this book is about. No fancy code, just

5. Preface 12

fundamental principles. An overview of the most important topics
so that you do not get overwhelmed by the infinite number of
decisions a software engineer has to make. This book contains
numerous real-world examples that do not require any code. I want
to explain principles that are very general and do not require any
code to explain. In fact, software engineering is, in some respects,
very similar to other fields of engineering. Therefore, a car is often
a better example to explain my point than some fancy piece of code
that you struggle comprehending.

Of course, I also included some code examples. I didn’t want this
book to be too abstract. Though in order to keep the examples easy
to understand, they had to be small, and I frequently had to simplify
them a lot.

I’m not a great software engineer, not at all. And my English is
fairly lousy. But maybe this is a good thing when writing a book.
It will be easy to understand as I tried to keep all chapters concise
and easy to understand. It keeps the book short and motivates you
to read it all because everything I wrote is important. At least, that’s
what I hope.

I’m not God, and this is not the Holy Bible. This book aims to assist
you with your programming problems, but it does not contain the
absolute truth. Probably, there are hardly any absolute truths in
programming; it’s not math. Software engineering is an empirical
field. We have to find out what works best by trying different
things and explain it a few sentences. There are many trade-offs
to be made as some of these rules may be contradictory. I hope
that the recommendations and trade-offs I provide in this book will
help you write better code. And if you don’t agree with some of
my recommendations, that’s fine. You will certainly be able to find
examples where my general recommendations will not apply. Feel
free to create a YouTube video to explain your point if you can come
up with a better rule how to do something. I would be delighted if
you taught me how to become a better software developer.

5. Preface 13

Reading this book is only one step in your career. Next, you have to
get out into the real world. Get a job. Write code and learn how to
apply the principles you have learned here. It is hard; this will take
your whole life. Many others face similar problems. Talk to them,
improve your solutions, and get smarter. Become a real software
engineer.

Enjoy this book and good luck with your career.

Who this book is for

This book was initially intended for PhD students. I know quite a
few who spend a lot of time programming but have never really
learned how to do it properly. After learning the basic syntax
of a programming language, they began writing code. But it was
dreadful. They never learned how to write good code. They never
learned about the necessity of small class sizes or the significance
of tests. And there are many more points that I am going to explain
throughout this book.

Of course, this book is not only for PhD students. There are also
many programmers who never learned proper software engineer-
ing. Though as you are reading this book here, chances are that
you have already read some other books and that you are familiar
with many of the things I am writing about. But I believe there are
still some novel ideas in this book that you can utilize to enhance
your code.

At the same time, I’d like to mention what this book isn’t about.
It doesn’t teach you fancy modern topics in computer science.
It doesn’t teach you how to develop artificial intelligence, high-
performance computing, web development, databases, distributed
systems, etc. I simply lack the scope and knowledge to cover
all these topics. Though I’m confident that the principles taught
throughout this book will help you with these topics, as they all

5. Preface 14

require good software engineering skills.

Writing this book

Writing a book about software development is hard. Harder than
writing a book about physics or math. Physics and mathematics
are precise sciences, and you can derive all your formulas. Software
engineering, on the other hand, is not an exact science. I can only
give some examples to support my claims, but no proofs. And you
can certainly find counter examples if you try. There are some rules
of thumb at most, but there may be two rules contradicting each
other. The best example is the naming of variables, functions, and
classes. There is the rule that “a name should be short, yet concise”.
Good luck finding such a name.

I can only provide you with some general rules of thumb, and
you will have to determine how to apply them yourself. This will
take practice, and it is preferable to work together with a more
experienced coworker who can assist you in case you have any
questions. This book aims to serve as a manual, but ultimately,
you will need to learn how to apply the recommendations given
here on your own.

A word about Copilot

// remove the Copilot part altogether?

My publisher had the idea to include Copilot, one of the new AI
code generation tools available at the time of writing, in this book.
And indeed, there are quite a few cases where Copilot can be useful
whenwriting code. I tried to create examples that correspond to the
chapters. Though I couldn’t provide examples for every chapter. In
many cases, the content of the chapters was too generic, as if code

5. Preface 15

examples would be very helpful. In these chapters where I provided
code examples, Copilot was generally able to generate useful code.
Though sometimes I had to experiment a bit to achieve satisfactory
results, I didn’t always obtain the desired code. I think there is still
a lot of research to be done on how to use Copilot in the best way.

In general, it can be said that AI code generation is already a very
useful tool. It can significantly improve your productivity and the
quality of your code if used correctly. It also helped me write this
book here. Though you always have to be cautious. While Copilot
is not perfect, it can generate code that is not always correct. It
provides only some suggestions. Or as it is called: “Copilot”. It’s
not a replacement for a software engineer; it’s just a tool that assists
you with your work. You still have to guide it in the right direction.

Part 1: First things first

6. Software Engineering
“If I had an hour to solve a problem, I’d spend 55 minutes thinking
about the problem and 5 minutes thinking about solutions.” –
Albert Einstein

In this chapter, we want to examine how code should look like.
What kind of rules there are to judge the quality of code and
some of my personal recommendations what kind of features of
your programming language you should, or rather shouldn’t, use.
In my opinion, there are numerous practices in object-oriented
(OO) programming that are predominantly utilized for historical
reasons. In reality, they usually lead to poor code and should be
abandoned. In fact, pretty much everything other than plain classes
and interfaces should be used with care in OO programming.

But OO programming is by far not the most important topic in this
book. No matter how good or bad your use of OO features is, you
can still write good or bad code. There are more important concepts
to learn from this book. Most notably, the Single Responsibility
Principle (SRP), basics of interfaces, testing, and naming. Further-
more, there are several chapters on how to work with code that has
not been written up to current standards and how to collaborate
with other programmers. Topics that are highly important but are
frequently neglected in books on software development.

This book contains relatively few code examples. It’s more about
general concepts of software engineering, rather than concrete code
examples. Still, some concepts are easier to understand with a few
lines of code. Therefore, I tried to create some code examples. Even
though it’s quite challenging to find concise examples that are still
expressive enough to fit into a book. As for the programming
languages I chose, mostly Python and some C++. Not because
these languages would be better than, for example, JavaScript,

6. Software Engineering 17

but rather because these are the languages I know. I chose two
programming languages because there are some concepts that I
can only explain using one or the other. Though there are only
a few things that depend on the programming language. Most of
the explanations provided here consist of general recommendations
that are applicable to almost any programming language.

“Software Engineering is the application of an epmirical, scientific
approach to finding efficient, economic solutions to practical prob-
lems in software” - David Farely [Modern Software Engineering, p.
xxii]

This book aims to provide clear answers to simple problems in soft-
ware engineering. I also attempt to provide answers to challenging
problems like naming, but these are typically quite vague, as in
other books. This is what makes the problems so challenging and
software engineering exciting. The only thing that truly helps with
challenging problems is a lot of experience. It would take too much
explanation or code to explain all the details. I can only attempt to
present all the various arguments for certain trade-offs, and then
you will need to do all the reasoning by yourself. This is why
software engineering is challenging. This is why it is fun. There
are too many problems without any clear solutions. And you have
to deal with them all by yourself.

This book is about engineering. It’s about finding ways how to
write better code. It’s not a strictly scientific approach, it’s more of
an empiric approach. Thus, there is no absolute truth and there are
no proofs in this book. I will rather give you some general advice
on best practices. Due to this reason, there are only a few references
available for specific topics. Most chapters consist of my personal
interpretations of more specialized books. Thus, I mention the
books I was reading as a foundation for the corresponding chapter.
And of course, all of these books are biased bymy personal opinions
and reasonings.

6. Software Engineering 18

The Life of a Software Engineer

I understand that you want me to begin and provide you with some
sophisticated code examples. And I’m sorry to inform you that this
is not happening. We don’t even know yet what this book should
be about. Of course, you want to become a great software engineer,
get a job at Google, earn a lot of money, and live a happy life. But
this is all so vague. We have to sit down and analyze the situation.

Let me start with a very blunt question: What do you think a
software engineer does?

“He writes code” may be your first response.

“He engineers software” is a very smart one.

Indeed, these answers contain some truth. But writing code only
represents a small portion of your future workday. One thing you
will do is the same as what we are doing right now: analyzing a
problem and trying to figure out what to do next.

You will, of course, spend a fair amount of time with your precious
code. But I have to disappoint you once again. It will be like in a
marriage. You spend most of your time cleaning up or discussing
things. The part that is truly enjoyable only covers a small fraction
of it. The following plot, with highly unscientific numbers that I
found somewhere on the internet, sums it up nicely.

You definitely need to take a second look to fully understand
the meaning of this plot. You will spend only 5% of the time
implementing new features! 5%! Not to mention all the meetings
you have to attend as well. Of course, these numbers are only a
very rough estimate. They depend on many factors. If you are
working on a new project where no refactoring (code clean up) is
required yet, you will have less code to read. Ultimately, you will
spend more time coding. In a very large project, it takes more time
to implement changes. It can take a year to become fully productive
in a large project! But the company has been generating revenue

6. Software Engineering 19

from this code for a long time, so prioritizing the addition of new
features is no longer as crucial. Either way, I will continue the
discussion with the value from the plot.

The most obvious and undeniable conclusion we can draw from
the plot is that software engineering is not about writing code. It’s
about reading code! If you can reduce the time required to read
code by half, you save more time than you spend writing code in
total. By a lot.

I came up with five fundamental rules for software engineering.
The first one is:

We write code that is easy to understand.

Good code is not fancy; it is not complex, and it is not necessarily
short. Good code is simple. It is as simple as it gets. Reading good
code is not like reading Shakespeare. It’s … it’s rather like watching
some politicians…Who’s vocabulary consists of only 1000 different
words. This is beneficial when speaking on television. Everyone
understands you. Even when people are tired or uneducated,
they enjoy listening to you. They don’t have to focus in order
to understand you. I sometimes feel embarrassed because of my
poor English skills. But writing these lines is really cheering me
up. Most people reading this book are not native English speakers,
and therefore, my somewhat limited language skills may actually
be helpful in that regard. It makes this book easier to understand.
And with code, it’s fairly similar. Simple code is good because it is
easy to comprehend.

Good code utilizes only the essential syntax provided by a pro-
gramming language. It is great if you don’t know a programming
language too well. You avoid falling into the trap of using fancy
but useless features. Don’t learn programming languages. Learn
programming. Unless you work for Google or another company
developing highly specialized code, you will never need all the
gimmicks that modern programming languages have to offer.

6. Software Engineering 20

Writing correct code

Now, it is not only important to ensure that the code works, but
we also have to verify its correctness. The crash of two Boeing
airplanes in 2018/2019 was not the first time that software bugs led
to catastrophic damage. Nor will it be the last time, unfortunately.

We don’t want to be responsible for people dying or companies
going bankrupt. We want to write impeccable code. We want
to ensure that there are no bugs to the best of our ability. We
constantly check that our code is correct. We test our code. We
let our computers test our code. We write code to test our code!

The second rule of software engineering:

We write automated tests that cover all of our code.

Along with this rule comes the fact that we all make mistakes.
We’re only human after all. So we have to write our code
accordingly.

The third rule of software engineering:

We write code that can have as few possible bugs as possible.

Cleaning up code

Now let’s return to our lovely plot. There is one more substantial
chunk of work. Modifying the current code. Also known as
refactoring. Yes, as astonishing as it sounds, you have to clean up
your code just the same way as you have to clean up your kitchen.
This process is called refactoring, and its importance cannot be
understated. It helps you keep the logic of the code under control
by sorting things out. All the time, over and over again. Without
refactoring, your code quite quickly becomes a huge mess, making
it difficult to implement any changes. And there will be a million

6. Software Engineering 21

places where bugs can hide. Though changing code always carries
the inherent risk of potentially breaking it. This is one of the
reasons why we need good tests. If we have good test coverage,
we can change the code with confidence that we won’t break it.

The fourth rule of software engineering:

We constantly clean up our code.

Now you have an idea of what the life of a programmer will look
like. Now you knowwhat to look out for. Nowwe can do what you
wanted me to do half an hour ago. I can explain the fundamental
principles of writing good code.

Writing code for a purpose

You might already be working in a company, or you will be soon.
Your boss is not going to let you write code for a month just because
you like it. You will be spending a considerable amount of time
in meetings and engaging in discussions with others to determine
precisely what you should do. What your customers want.

The fifth rule of software engineering:

We write code to create value for our customers.

If you don’t like meetings nor customers, you can stay at home
and write whatever code you like. But unless you are a genius,
the chances of anyone paying you for that are very low. It is more
rewarding to write mediocre code that is being used than to write
brilliant code that no one cares about.

The five rules of software
engineering

These five rules will accompany us throughout our book.

6. Software Engineering 22

//make a list of the 5 rules in a box

• We write code that is easy to understand.
• We write automated tests that cover all of our code.
• We write code that can have as few possible bugs as possible.
• We constantly clean up our code.
• We write code to create value for our customers.

7. Good code: a list of
rules

// remove this chapter? we already have the one sentence summary

“Truth can only be found in one place: the code.” - Robert C. Martin

This is an attempt to distill a list of rules that enable you to assess
the quality of code. Unfortunately, I didn’t find a way to sort these
points. They represent the vastness of software engineering.

By definition, good code is easy to understand [preface]. Also, for
new software developers on the team. With good code, even mar-
keting people may comprehend some of your technical discussions
as you use the same language [domain driven design].

Good code is well-tested [testing]. It includes unit and functional
tests [types of tests]. Especially a good coverage with unit tests
is essential as it compels you to write high-quality code [writing
better code with tests]. At the same time, unit tests significantly
reduce the number of errors in your code.

Pretty much all your code follows the SRP [Single Responsability
Principle]. Functions, classes, modules. Everything. The build
process only requires one command. This makes the code much
easier to understand, and naming also becomes simpler.

Names should be short yet concise [Naming].

Do not repeat yourself (DRY) [section Do not Repeat Yourself].
Do not copy-paste code around. But also avoid conceptual code
duplication. Code duplication is terrible as you can never be sure if
making a single change is sufficient, or if it needs to be applied in
multiple other locations. This leads to bugs and high maintenance
costs very quickly.

7. Good code: a list of rules 24

Classes should have high cohesion [classes]. They should have a
strong coupling between the variables [Data types] and methods
[Functions]. On the other hand, they should have weak coupling
to other classes. Due to constantly adding functionality, classes
tend to lose cohesion. Then, they have to be broken up into several
smaller classes [Refactoring].

It feels easy to add features and change code. Thanks to the test
coverage [Testing] you have a safety net, and well-structured code
makes it apparent where new features belong [Physical Laws of
Code].

A function name explains you what the function does [Naming].
There is no surprising behavior. The same holds true for classes
and variables. Functions have no side effects [Functional Program-
ming].

There are no magic numbers. Assigning the magic number to
a variable with a suitable name makes the code much clearer to
understand [Naming].

Define variables right where they are used. Always assign a value
to them immediately.

Create objects all at once. There are cases where objects are created
only partially due tomissing information. This is should be avoided
and akin to a supply chain issue. Gather all the pieces needed to
create an object before doing son. An object should be created
completely or not at all. Throw exceptions if objects cannot be
created at once.

Write short functions (< ₁₀ linₑs₎ ₐnd clₐssₑs ₍< 30 lines) [Single respon-
sability principle]. These are very rough estimates and depend on
numerous factors. Usually, their length is limited by the SRP and
the level of abstraction [Levels of abstraction]. Complicated func-
tions and classes should be kept short to prevent their complexity
[Complexity] from getting out of hand.

Keep the dependencies between different parts of the code minimal

7. Good code: a list of rules 25

[Dependencies]. Especially when dealing with third-party libraries
[Third-Party Libraries], it is advisable to create a wrapper [Inter-
faces] around them. This is helpful when you want to replace it.

Using a debugger [Bugs, Errors, Exceptions] frequently is a strong
sign that you have lost control of the code. Normally, automated
tests [Testing] should cover all bugs, rendering the debugger un-
used.

YAGNI: You Aren’t Going to Need It. Plan ahead the structure
of your code, but refrain from implementing anything you don’t
need yet [Planning]. Chances are, you will never need it. Only
architects have to speculate on what will be used in the future
[Software Architecture]. Developers implement only features that
will definitely be utilized.

The solution representing the natural logic of the problem is usually
the best [Domain driven desing]. It has the lowest complexity
[Complexity]. The complexity of the code is equal to the com-
plexity of the actual problem to be implemented. The sales team
can explain the domain logic, and you need to bake it into the
code. Don’t come up with your own logic on a problem you don’t
understand well.

Use the most basic features of your programming language. [Pro-
gramming language]. Only use more complex features if you truly
benefit from them. Avoid utilizing features of your programming
language that resemble black magic.

Avoid nesting if loops. This violates the SRP and is highly prone
to bugs [Single Responsability Principle]. Avoid nested try-catch
blocks as well. It is preferable to avoid nested loops entirely. In
fact, you should having many levels of indentation. These make
code hard to understand.

Avoid using Boolean values [section Booleans] and logic as much
as possible. Due to human deficiencies, these lines of code harbor
the most errors. Try to avoid them as far as reasonably possible.
Ensure that every branch of an if statement is tested.

7. Good code: a list of rules 26

Avoid passing Booleans as function arguments [Functions]. They
are a strong indication of a violated SRP [Single Responsability
Principle]. Resolve the consequences immediately and use depen-
dency injection (DI) instead.

Avoid string comparisons [section Strings]. Use enums instead
[seciton Enums]. Convert the string into an enum as soon as you
have the string object available.

Write self-explanatory code. Only use comments for aspects that
the code cannot explain on its own. [Comments]

The Zen of Python

The Zen of Python [https://peps.Python.org/pep-0020/#the-zen-of-
Python] is a list of 19 guiding principles by Tim Peters. I find them
very useful, so I decided to include some of them in my list, along
with a brief explanation.

Explicit is better than implicit: Explicit code is easier to understand.
Do not try to hide complicated logic as it will haunt you eventually.

Flat is better than nested: Nested code is hard to understand and
error-prone.

Readability counts: Of course, it does. Readability is the most
important metric of good code.

Special cases aren’t special enough to break the rules: Stick to the
rules explained in this book.

Although practicality beats purity: You are allowed to break the
rules explained in this book if you have a valid reason.

Errors should never pass silently: If an error occurs, something
went wrong, and the user should be informed about it.

There should be one, and preferably only one, obvious way to do it:
Of course, there are always some details that you don’t know how

7. Good code: a list of rules 27

to deal with. In general, it is true that there should be only one way
to implement a feature.

Now is better than never: later = never.

If the implementation is hard to explain, it’s a bad idea: This
suggests that the logic behind your solution may be flawed.

Namespaces are one honking great idea–let’s do more of those! Yes,
namespaces are great. They help you structure your code and make
it more readable because you know where a function or other piece
of code originates from.

8. Understandable code
“Any fool can write code that a computer can understand. A
good programmer writes code a human can understand.” – Martin
Fowler

How Humans Think

As we have discussed, good code is easy to understand. But what
makes code easy or hard to understand? A computer understands
everything. He doesn’t care as long as the syntax is correct. And
if there is a bug, the computer simply runs it. But we don’t care
about the computer. This book is written for humans. Code is
written for humans. We have to ask ourselves: When does a human
understand something? Or what do humans struggle with?

Humans are fundamentally different from computers. We can
achieve incredible feats, yet we also have significant weaknesses.
The evolution adapted us to our environment. We were made to
live in the forest, hunt animals, and socialize with our clan. We
needed keen eyes to spot our prey, a vivid imagination to grasp
the terrain and wind direction, and familiarity with our hunting
companions. These tasks necessitate a great deal of intuition
and approximate reasoning. These are challenges that computers
or robots struggle with. Though they improve, thanks to the
emergence of artificial intelligence.

One thing is clear: Humans struggle to think logically. We are eas-
ily overwhelemed if there is no structure that we can understand.
The computer can execute the following line of code without any
issues, but I guess only very few readers would be able to determine
the result within five minutes.

8. Understandable code 29

1 (lambda f, n: f(f, n))(lambda f, n: [(not n % 3 and "fizz\

2 " or "") +

3 (not n % 5 and "buzz" or "") or n] + f(f, n+1) if n <\

4 = 100 else [], 1)

[https://www.quora.com/What-are-some-prime-examples-of-bad-
Python-code]

The result is the famous “Fizz Buzz” game [https://en.wikipedia.org/wiki/Fizz_-
buzz]. Humans struggle with code like this because we struggle to
structure it. It is too big to understand all at once, and most of us
can’t break it down into smaller pieces.

We are limited by the amount of complexity we can imagine. We
are not able to understand this seemingly unordered pile of text.
So, there is only one strategy that works: divide and conquer.
Break up complex problems into many smaller pieces that you can
understand. Maybe you will have to repeat this step recursively
until you have small enough pieces that you can deal with. This is
our area of expertise, where we excel in solving complex problems.
Use your imagination!

This is how we are able to create extremely complex objects. We
have to break them down into small parts that we understand very
well and then build them together like Lego bricks. Every time we
assemble a few pieces, we create something new that we give a
name to and can explain to other humans what this thing does. It
has a higher level of abstraction.

Most people driving a car have a good understanding of how it
works. A car consists of various components such as an engine,
wheels, brakes, a steering wheel, etc. We can mentally deconstruct
a car into smaller parts that we can still comprehend. Now, if the
car has a technical problem, we can usually make a fairly accurate
guess about which of all these parts broke, even if you are not a car
mechanic. With code, it should be the same.

8. Understandable code 30

Spaghetti code

So far, every programmer who told me they were working on a
really complex problem simply wrote poor code. They all failed to
break the problem into small pieces and reassemble them again. Or
rather, they didn’t realize they should do so and wrote spaghetti
code instead. The code became so complicated that they were
barely able to add any new features. If something is complex,
then you absolutely have to break it down. As long as you can
explain how something works in words, you can also write it in
understandable code.

You should never underestimate the complexity that can arise from
poorly written code. If you write a thousand lines of unstructured
spaghetti code, it might cost millions to rewrite it. And this is no
exaggeration!

This entire book is about writing code with low complexity. The
sections on the Single Responsibility Principle, naming, and levels
of abstraction are probably the most fundamental ones. It is all
about learning how to write human-readable code.

Examples

Structuring Function Arguments

In the following code, one can easilymix up the different arguments
since they are all of the same type. This is a very common problem
in programming. The solution is to use a class object instead of a
tuple.

1 def send_email(to, subject, body):

2 # ...

8. Understandable code 31

1 from dataclasses import dataclass

2

3 @dataclass

4 class Email:

5 to: str

6 subject: str

7 body: str

8 email = Email(to="google", subject="new search engine", b\

9 ody="it's awesome")

10 def send_email(email):

11 # ...

In Python (and C++ 20), this problem is less prevalent as keyword
arguments are supported.

1 def send_email(to: str, subject: str, body: str):

2 pass

3 send_email(to="google", subject="new search engine", body\

4 ="it's awesome")

However, it is still recommendable to use a class instead of named
arguments. Classes order the arguments in a logical way. The
email is of a higher order than the three strings. It orders these three
objects into one logical unit, making it much easier to understand
the code. Some people start using keyword arguments for 20
function arguments. I think this is a really bad idea, even with
keyword arguments. It is clear that they should have structured
the arguments using dataclasses.

Complicated code

Let’s review the FizzBuzz code mentioned above.

8. Understandable code 32

1 (lambda f, n: f(f, n))(lambda f, n: [(not n % 3 and "fizz\

2 " or "") +

3 (not n % 5 and "buzz" or "") or n] + f(f, n+1) if n <\

4 = 100 else [], 1)

This example is challenging to comprehend because there is an
excessive amount of logic concentrated on a single line. It is very
challenging to keep track of all the logic that is happening here.
Instead, it is much easier to understand the code if you break it
into smaller pieces, as demonstrated in the following code.

1 output = []

2 for i in range(1, 101):

3 if i % 3 == 0 and i % 5 == 0:

4 output.append("fizzbuzz")

5 elif i % 3 == 0:

6 output.append("fizz")

7 elif i % 5 == 0:

8 output.append("buzz")

9 else:

10 output.append(i)

This is much easier to understand and therefore the better solution.

Assigning variables inside conditions

Avoid creating assignments within if statements. It is difficult to
read and easy to make mistakes. I had to create a C++ example
because such code is not possible in Python. Python returns an
error message if you make an assignment inside an if statement.

1 if (int t = time_elapsed()) ...

8. Understandable code 33

The problem is that you can easily confuse this code with t ==

time_elapsed(). This is a common mistake. And as it’s our job to
prevent mistakes, we should avoid this kind of code.

In C++ and many other programming languages, it is possible to
omit curly braces if there is only one line of code. However, this is
error prone as people don’t pay attention. As has happened before.
It’s not a big thing, but I recommend to always use curly braces.

1 if (time_elapsed() > 10)

2 std::cout << "time is up" << std::endl;

3 std::cout << "this will always be printed!" << std::e\

4 ndl;

Apparently, there’s no such discussion in python.

Scope of variables

It is hard to keep track of variables. One way to mitigate this
problem is to use them only in a small scope.

Avoid using do while statements if it’s supported by your program-
ming language of choice. The issue is that you need to keep track
of the conditional variable throughout the entire range of the loop.
This is very error-prone because keeping track of a variable over
such a long time is challenging. It is much better to use a while

loop and initialize the variable before the loop.

As do while loops are not supported in Python, I provide a C++
example.

8. Understandable code 34

1 int i = 0;

2 do {

3 cout << i << "\n";

4 i++;

5 // code that doesn't use i

6 }

7 while (i < 5); // what was i again?

The following code using only a while loop is easier to understand.
do while loops are frequently used if you want a loop to be
exectuted at least once. But this can usually also be achieved
by setting the variable of the loop and the condition in the loop
accordingly.

1 int i = 0;

2 while (i < 5) { // you can find out what i is without scr\

3 olling

4 cout << i << "\n";

5 i++;

6 // code that doesn't use i

7 }

Though the best solution is in most cases to use range based for
loops. This eliminates the need for an index altogether. Since
C++11 they are also available in C++.

1 for(const auto& car: cars) {

2 cout << car << "\n";

3 }

It is generally advisable to minimize the number of variables in use.
And they should have only a very small scope. This makes it much
easier to keep track of them. If you have to keep track of a variable
over a long period, you are very likely to make a mistake. Thus,

8. Understandable code 35

eliminate intermediate results. Make logic as simple as possible.
Avoid using control flow variables whenever feasible.

Limit the scope of all variables: avoid globals, keep classes and
functions concise, etc. If the scope is larger than necessary, consider
making the variable constant if possible. The scope of a variable
should never be more than about 10 lines of code, the maximal
recommended length of a function.

Approximate programming

If you aim to develop a program akin to TripAdvisor or Google
Maps. Let’s assume you have the longitude and latitude coordinates
of each restaurant, you want to determine the closest restaurant.
You have to calculate the distance on a sphere.

But in reality, such precision may not be necessary. You can simply
take the coordinates and calculate the distance as you would on a
map. This is sufficient for an estimate, rather than a very precise
calculation. This makes the whole calculation much easier.

Copilot

Copilot is generally quite proficient at generating readable code. At
times, it is even better than me. You can tell that Copilot learned
“programming” based on a set of fairly well-written code. It is often
beneficial to seek a second opinion from copilot as an inexpensive
alternative to a code review. I think this is one of the areas where
Copilot truly excels. The human-readable version of the Fizz Buzz
code above was written by Copilot.

9. Single Responsibility
Principle

Every object does exactly one thing. Everything is done by
exactly one object.

There are various interpretations of the Single Responsibility Prin-
ciple (SRP) [Clean Architecture]. I don’t think the differences
between them really matter. The highlighted version above rep-
resents my personal interpretation of the SRP. It is much more
important that you understand the idea behind it.

The SRP is arguably the most crucial topic in this book and in all
of software development. Every piece of code should have exactly
one task. It is the foundation of readable and reusable code.

There is one common missconception regarding the SRP: Please
note that the SRP does not state that every software developer is
responsible for their own piece of code. The SRP focuses on code
fragments, not on code ownership.

Do not Repeat Yourself

A direct consequence of the SRP is the “Do not Repeat Yourself”
(DRY) principle [The Pragmatic Programmer]. You should avoid
any kind of duplication in your project. You should not copy and
paste your own code (copying from Stack Overflow is fine, though).
Instead, you should refactor the code that would be duplicated into
a dedicated function. If you have duplicated code, either copy-paste
code, or conceptual duplication, it indicates that a task is not being
performed by a single object but rather by two or more objects.

9. Single Responsibility Principle 37

Instead, write a function and use it from now on. This explanation
of DRY covers most cases that violate the SRP.

The DRY principle not only applies to code. It also applies to
processes such as constructing your project. If you have to execute
many steps by copy-pasting them from some manual to build your
project, something is wrong. Instead, you should automate the
whole process. Write scripts to build and test your project. [97-
things-every-programmer-should-know chapter 63, chapter 42].
The build should run through in one step without any warnings or
errors. Warnings are unnecessary mental burdens. Even if ignored.
Clean them up immediately. // where did I write something similar
before? -> chapter automation?

The other case involves code that has emerged as duplicated over
time. Frequently, the same piece of logic is required in multiple
locations, leading to its repeated implementation due to a lack of
knowledge. This kind of duplication must be refactored relent-
lessly. It is very difficult to detect this type of duplication as it
accumulates over time. Who knows about every piece of code in a
large program? Is it worth the effort to search through the entire
codebase for a social security number parser, or would it be more
efficient to write a new one from scratch? Writing a new one may
be faster. However, this comes at a cost. If the social security
number ever changes, it will be nearly impossible to locate all the
bits and pieces of code related to it. This could become a significant
source of bugs.

As I mentioned, it is difficult to keep track of this type of redundan-
cies. There is no easy way to prevent them. The only way I could
think of is keeping the parts of the software small and cohesive so
that it is always more or less clear where a certain feature has to be
implemented.

One common source of repetition is if statements. They look
something like this:

9. Single Responsibility Principle 38

1 if job == "president":

2 residency = "White house"

3 # ...

4

5 if job == "president":

6 security_standards = "very high"

etc. It is fairly common to have many repeating if statements.
Such kind of if statements can be spread around the entire code
base, violating the DRY principle. Though it would be quite simple
to avoid them, for example by using polymorphism. Create a
President class with the appropriate properties.

1 class President:

2 def __init__(self):

3 self.residency = "White house"

4 self.security_standards = "very high"

Now you only have to create a president object once and pass it
around. There is no longer any need for any if statements.

1 president = President()

2 location = president.residency

Another option is to use a dictionary. Dictionaries are great for
avoiding switch/match or nested if statements.

1 president = {

2 "residency": "White house",

3 "security_standards": "very high"

4 }

9. Single Responsibility Principle 39

Exceptions of DRY

The DRY principle does not always have to be strictly followed.
It’s not always worth trying to find this abstraction with only
one repetition of a few lines of code. Also, the overhead of
creating a new function might be higher than the benefit gained
from refactoring the code. Following the DRY principle increases
abstraction of the code, but at the same time also coupling. This is
a serious issue.

One option is to refactor code only in case of a three-fold repetition.
This is also in agreement with Test-Driven Development (TDD)
[Writing better code with tests] where you only have to refactor
if there is a threefold duplication of the code. // quote? Clean
Craftsmanship??// Though generally I recommend refactoring as
soon as you see some repetition that can be refactored out.

Advantages of the SRP

The importance of the SRP cannot be overstated. It alone makes
your code an order of magnitude better when applied properly or
worse when ignored. And it is fairly simple to learn. There are
dozens of reasons why this is the case. Here are the most important
ones.

Understanding

A function or class that implements only one thing will always be
comparatively easy to understand. It all follows the same logic,
and there will be no unexpected behavior. Additionally, the code
for a specific problem will be concise as it focuses solely on its core
functionality. All other duties are handled elsewhere.

9. Single Responsibility Principle 40

Naming

Assigning names to objects is one of the most challenging tasks for
a programmer and can be extremely frustrating. Names are either
always too long or not expressive enough. This is an indication
that you might have violated the SRP. If an object obeys the SRP,
it does one thing. Naming an object that serves only one function
is typically not that difficult. If you choose a name containing an
“and”, chances are high that you violated the SRP.

No Duplication

Any piece of logic should be implemented only once. This has the
advantage that refactoring becomes comparatively easy since you
only have to change the code in one location. Is your payment
system in need of an update? Go to the PaymentSystem class and
make the necessary changes.

Easy Testing

Writing unit tests becomes fairly simple as well. A class adhering
to the SRP is not overly complex. Initializing class instances is
likely not a significant issue, nor is comprehending the logic behind
it. Understanding the concept of the class makes it easier to
identify the key components for testing. Just look at the few public
functions. As the class is straightforward, you will immediately be
able to determine the expected output of the function.

Less Bugs

As the purpose of each class becomes clearer, it will be easier to
structure the logic of your problem. You will only write code that
makes sense. You will create fewer bugs. And it’s very hard for

9. Single Responsibility Principle 41

those bugs to hide. Frequently, you will quickly identify why a bug
appeared because it is immediately apparent which part of the code
is responsible for the bug’s behavior.

Let me provide a real-world example: You are wearing an orange
T-shirt, although you should be wearing a white shirt. If the only
time you have access to a wardrobe is in the morning after having
a shower, you know that it was at that time that you made the
mistake. Meanwhile, if you have access to the wardrobe all the
time, you never know when you might have incorrectly decided
to wear an orange shirt. This example nicely illustrates why it
is important to restrict access to objects as much as possible and
perform actions in only one location.

Bug fixing

Tracking down bugs will be much easier. You can understand fairly
well what each class should do and, therefore, find unexpected
behavior much quicker. Fixing a bug may seem harder at first
glance. You are no longer allowed to randomly add an if statement
in your code. This would violate the SRP and lead to bad code.
Instead, you have to find a proper solution. Usually, this turns out
to be easier than applying an unsightly hotfix. And especially, it
really fixes the bug once and for all. All in all, we can conclude
that fixing a bug becomes more challenging, but fixing it correctly
becomes much easier if you adhere to the SRP.

Drawbacks of the SRP

There are very few drawbacks of the SRP that I could think of. The
SRP is sometimes a bit too strict. It is not always worth obeying
strictly. If a function is very short, it is not necessarily bad to have
it duplicated. Adding a function to introduce an additional level

9. Single Responsibility Principle 42

of abstraction increases mental workload and may not always be
justified. Though these are exceptions, rather than the norm. When
in doubt, it is better to adhere to the SRP and refactor the code.

10. Levels of abstraction
“You can solve every problem with another level of indirection.” –
Andrew Konig

“Except for the problem of too many levels of indirection.” – my
hero

Levels of abstraction are an extremely important concept in soft-
ware engineering. Yet, it doesn’t receive the amount of attention it
deserves. It applies to so many things around us, but so few people
know about it. It’s about taking a few objects and creating a new
object with completely different properties. Something completely
new emerges.

Real world example

You take a CPU, a motherboard, RAM, an SSD, and a power supply.
Some of the most complex objects humankind has ever created.
From some of them, you might have a rough idea of what they do,
and maybe even how they work. When you assemble these parts, it
becomes mind-boggling. So many extremely complex objects. And
now we combine them. How is this going to end up? Surprisingly
simple. You sit in front of it every day. It’s a computer. And all
your questions are gone. It represents a higher level of abstraction
and is quite simple to use. As I write this book, I only care about
the text software that I use. I don’t care about the operating system
(OS). I don’t care about the computer that is standing on the floor.
I don’t care about the CPU inside. I don’t care about the billions
of transistors inside a device, nor do I care about the quantum
mechanical effects that these transistors are based on. My text
software relies on all these components, but I don’t need to have

10. Levels of abstraction 44

any knowledge about them. All these things were abstracted away
by the next higher level. The text processing program emerged
from combining all these immensely complex objects.

One can also look at the problem from the bottom up. Quantum
mechanics does not know anything about transistors. Transistors
don’t know anything about CPUs. CPUs don’t know anything
about computers, computers don’t know anything about the OS
and the OS doesn’t know anything about my text software. Some
things, like quantum mechanics, just exist. We can’t change them,
but we can use them to create other objects. Transistors, among
other components, are designed to operate inside a CPU. We can
design transistors that meet the extremely stringent requirements
for operating inside a CPU. You could take a CPU, break out a
transistor, and use it on its own. It’s just a transistor. Although it
is an extremely small one. You would need an electron microscope
to see it. The OS supplies an interface on which the text processing
software runs, but the OS does not concern itself with the text
processing software.

By combining existing objects, you create a level of abstraction.
The new object has a higher level of abstraction than the previous
ones. It may have completely different properties than the lower
levels, also known as emergence. In theory, the higher-level object
combines the complexity of all the underlying objects. However,
if the higher-level object is well-designed, you no longer need to
concern yourself with the lower-level objects. Just as it is very
challenging to calculate the quantum mechanical properties of a
simple molecule, you can still derive accurate predictions about the
behavior of a combustion engine or the aerodynamics of an airplane
by taking a statistical average of billions of molecules. In the very
same way, I can work with my text processing software without
having to worry about the OS installed on my computer.

Creating good levels of abstraction is one of the most important
tasks in software engineering. This is the very core that enables us,
as humans, to comprehend and address such exceedingly intricate

10. Levels of abstraction 45

tasks. You have to break them up into smaller and more manage-
able blocks that you can understand.

Programming Example

C++ is a fairly low-level programming language. Its widespread
usage is mostly due to historical reasons. There are many aspects in
which newer programming languages outperform older ones. But
it’s the same as always: The code is working and it will not be
replaced due to some minor inconveniences in the programming
language. About a decade ago, some of the most fundamental in-
convenienceswere removedwith the release of the C++11 standard.

C++ uses old school arrays. These commands allocate memory
to store objects. If the programmer doesn’t know how many
objects there will be, he has to use the infamous new and delete

commands to allocate memory on the heap and deallocate it in
the end. These commands are extremely error-prone. They were
extremely difficult to use. If you forgot to use delete in a corner
case, the software would leak memory. Usually, you had to restart
your operating system every few days for this reason. As it was
leaking memory, it became slow.

Here is an example of how to use new and delete.

1 int * arr = new int[10];

2 arr[0] = 42;

3 // etc.

4 delete[] arr;

If you use delete arr instead of delete[] arr, you create amemory
leak. Apparently, it is very easy to make mistakes when using new

and delete, such that one should avoid using them altogether.

One of the main reasons Java became so popular in the 1990s was
the introduction of the garbage collector. It took care of all the

10. Levels of abstraction 46

deletions. Meanwhile, there are still ways to create memory leaks
in Java; however, most issues with memory management were
gone. Without a doubt, that was a tremendous improvement at
the time.

Though it turns out there is also a solution to thememory allocation
problem using only pure C++ code. There is a simple pattern that
ensures you always call new and delete in pairs. You create a class
that calls new inside the constructor and delete in the destructor.
No matter what you do, every object in C++ is guaranteed to call
its constructor when creating and the destructor when deleting the
object. The constructor and destructor are each called exactly once.
Always. So, if we instantiate new inside the constructor and delete

inside the destructor, they are both guaranteed to be called exactly
once. The allocated memory is guaranteed to be freed. So, the
entire allocation and deallocation process is guaranteed to function
correctly.

Note that C++ also requires the use of smart pointers introduced
in C++11 to ensure writing fully memory-safe code. But we won’t
be able to cover this topic here. The interested reader is referred to
[citation: Effective Modern C++].

Here is a very simplified version of what the fundamental idea of
the vector class looks like. Our custom VectorClass contains an
array and manages its size. This requires some logic to understand,
but ultimately, the user no longer needs to have any knowledge
about the array inside the vector class.

[https://www.geeksforgeeks.org/how-to-implement-our-own-
vector-class-in-c/]

10. Levels of abstraction 47

1 class VectorClass {

2 private:

3 int* arr;

4 int capacity;

5 int current;

6 public:

7 VectorClass()

8 {

9 // allocate memory inside the constructor

10 arr = new int[1];

11 capacity = 1;

12 current = 0;

13 }

14 ~VectorClass()

15 {

16 delete [] arr;

17 }

18 void push(int data)

19 {

20 // if the array is full, allocate more memory

21 if (current == capacity) {

22 int* temp = new int[2 * capacity];

23 capacity *= 2;

24 }

25 current++;

26 // etc.

27 }

28 }

This idea of simplifying the usage of arrays changed C++. One
of the biggest problems has been resolved. The user-friendliness
has improved significantly. This pattern is used everywhere by ev-
eryone and has been called “Resource Acquisition Is Initialization”
(RAII) by Scott Meyers [Effective Modern C++].

If there is a code pattern that everyone uses, it becomes part of

10. Levels of abstraction 48

the programming language. The Vector class was created. It is
a higher-level object based on the array. It hides all the complex
work associated with new and delete and provides an easy-to-use
interface with all the essential functionality one would anticipate.
The only price to pay is a slight decrease in performance due to
the internal implementation details. This loss of performance is so
minimal that you won’t be able to measure it using any standard
software. This is a perfect example that you should let the computer
take care of what it can. The loss in performance is minimal, but
the gain in usability is very significant.

Vectors are a higher level of abstraction than arrays. They are
easier to use and superior to arrays in every aspect. Don’t ever
bother using old-school arrays. Don’t even waste time learning
more about arrays. I have told you everything you need to know.

The Abstraction Layers

// I think I have to rework this text here. Maybe I should move it
into the architecture chapter?

In your code, you will also have different levels of abstraction.
The upper levels always depend on the layer itself and on lower
layers. The code in a layer never depends on higher levels, but
only on lower levels. The code can be divided into different layers.
I personally like to break it up into five layers. Though it has to
be remarked that this is by far not the only way to sort the code.
There are many different ways to approach it, and the number of
levels depends on the complexity of the problem to be solved.

//create a Figure with levels of abstraction. Levels (bottom to
top): Infrastructure – Domain level – application layer – API –
acceptance tests/GUI. See DDD p.68 what the layers are used for
there.

No matter if you are looking at horizontal layers as shown here,

10. Levels of abstraction 49

or at onion layers, there is always one rule: dependencies only go
downward or inward. High levels always depend on low levels,
but never on higher levels. This is the essence of the magic: my
text processing software relies on the OS, but the OS doesn’t need
to have any knowledge about the text processing software since it
operates at a higher level.

Furthermore, the dependencies should always be only one level
deep. Even if some dependencies do not appear to rely on an
intermediate level, they should still be routed through this level.
This is important in order to decouple the code. For example,
database access should always be redirected through the infrastruc-
ture layer and never be handed directly to the domain layer. You
should only bypass levels of abstraction if it is absolutely necessary,
for example, due to performance reasons. But this should be the
exception rather than the rule.

Example of layered code

In the following code snippet, not all lines of code are at the same
level of abstraction:

1 def process_email():

2 open_email()

3 with open('attachment.txt', 'r') as f:

4 print(f.read())

5 close_email()

open_email and close_email are clearly functions at a higher level
of abstraction than with open In order to ensure that all the
code is at the same level of abstraction, we need to relocate the with
open ... code into a separate function. The code should look like
this:

10. Levels of abstraction 50

1 def print_attachment():

2 with open('attachment.txt', 'r') as f:

3 print(f.read())

4

5 def process_email():

6 open_email()

7 print_attachment()

8 close_email()

Now the code looks much better. All lines of code consist of
function calls to higher-level functions. Every line of code within
the process_email function is written in a way that resembles an
English sentence rather than typical Python syntax. Note that
the code has now become a little longer. This is not an issue.
Readability counts, not the length of the code.

3rd party libraries

The lowest level of abstraction consists of the programming lan-
guage and third-party libraries. You can’t change those unless you
replace them as a whole. Modifying code in a third-party library
may be feasible in certain situations, but I strongly advise against it.
Unless you incorporate the library into your codebase and treat it
the same way as all your other code. Generally, this is an extremely
bad idea as it involves a significant amount of work. The only
reasonable approach is to contact the authors of the library and
offer help to get your suggestions implemented. Therefore third-
party libraries are on the lowest level of abstraction. They do not
depend on any of your code.

Infrastructure code

One layer above the third-party libraries, we have our own low-
level infrastructure code. These are generally all your basic data

10. Levels of abstraction 51

types and all the input/output (IO) code. All the technical details
that the user will never see. Like the engine parts of your car. Parts
that the user will not even know about. He can only guess how
this stuff could be implemented, but if done properly, he will not
have any clue how it’s actually implemented. Neither in a car nor
in your code.

The domain level

Then there is the domain level; see also [chapter Domain-Driven
Design]. This is the core of your application. It contains all the
business logic of your software. This is where all the complexity
of your software lies. It takes an understanding of the business to
comprehend this code. The domain model converts the low-level
computer language from the infrastructure into human-readable
text, although it still adheres to the syntax of a programming
language! Every businessperson should be able to comprehend the
ultimate outcome of this text.

The domain level is the part that is difficult to develop and cannot
be purchased elsewhere. You have to do it yourself. This is what
your company will earn money with. It’s the core of your business.

The application level

The next level is the application-level code. Here, the code follows a
logic similar to the problemwe are solving. Variables and functions
have the same names as those used by the salesperson. It also
follows the same logic. If a marketing professional reviews the
application-level code, they should be able to comprehend the
process and potentially identify any errors.

10. Levels of abstraction 52

API

One level higher is the API. This defines the interface between our
code and the user. It is a wrapper around the application-level code.
The API provides all the functionality that users would expect in
an easy-to-use format. However, the API is not at the highest level.
It is still one level below the Graphical User Interface (GUI). It is
of utmost importance to decouple the API from the GUI. The API
should have no knowledge of the GUI, and the GUI should solely
utilize API functions! And the same applies to acceptance tests.

GUI and acceptance tests

At the highest level are the GUI and the acceptance tests, both at
the same level. If you ever develop a GUI, ensure that its code
is entirely decoupled from the rest of the system’s code. The only
interaction should be through your API. The same principle applies
to acceptance tests [section Acceptance Tests]. The GUI and the
acceptance tests operate at a higher level of abstraction compared to
all other code you work with. Already, the programming language
for the GUI is completely different. You may write HTML! Due to
the SRP you are not allowed to write any logic in the GUI. Writing
tests for the GUI can be challenging. Therefore, the only solution is
to write acceptance tests at the API level and ensure that you never
break the GUI by maintaining its simplicity.

Summary

As a summary, I want to emphasize once again the tremendous
importance of abstraction levels. Different abstraction levels are
the key reason we can comprehend highly complex systems. And
it’s your job to define the abstraction levels for your code. Avoid
mixing different levels of abstraction.

11. Interfaces
“Make interfaces easy to use correctly and hard to use incorrectly”
- Scott Meyers

Interfaces are closely related to levels of abstraction. Each level of
abstraction has two interfaces. One is on the low-level side, and
the other is on the high-level side.

In this chapter, we learn that interfaces exist not only in software
but also in the real world. And we can learn a great deal from them.
An interface is always the connection between a developer and a
user. It is defined by the developer, but it should be designed from
a user perspective, as the developer only has to implement it once,
while users might have to interact with the interface thousands of
times. Therefore, it pays off to design an interface properly, as it
was already explained in the chapter on [levels of abstraction].

Real-world Interfaces

Functions, classes, libraries, and complete software or smartphone
apps all have interfaces. Even technical objects, such as plugs, have
an interface. The technical details may vary significantly, but the
basic principles are very similar.

“Plugs,” you may laugh. Yes, even plugs. Electric plugs in America
look different from European ones. It is impossible to plug an
American plug into a European socket, and vice versa. This is
due to historical reasons, but at the same time, it is also a safety
measure. It prevents you from connecting an American 110V
device to the European 230V grid, potentially causing damage. It’s
fail-safe. It is a good design that they are not interoperable. Though
most devices can now handle both voltages.

11. Interfaces 54

An example of poor design is the USB-A port. The USB cable
appears symmetric on the outside, but in reality, it is not. Someone
once said that you always need three attempts to plug in a device
with a USB-A cable. The first time would have been right, but you
didn’t manage it. The second time was the wrong way around,
and the third time you managed to plug it in. The USB-C port
features a much more user-friendly design. You can plug in the
cable either way. The lanes can be connected either symmetrically
or asymmetrically. The technicians implemented a solution that
enabled both types of connections. The two devices involved must
negotiate with each other on how to utilize the various lanes of the
cable. This was some additional work for the engineers. But, once
solved, it becomes a very convenient solution for the users.

Another example are water tabs for showers, as previously dis-
cussed in the section on orthogonality. There are two tubes for
cold and hot water where the plumber attached one valve to
each. This was a pain to use. It took quite a while to set the
temperature correctly, and once you changed the amount of water,
the whole procedure started again. This was the engineer-friendly
solution, not the user-friendly one. This was a bad interface. The
new handles allow you to choose the amount of water and the
temperature separately. This might be a bit more complicated to
implement, but it’s much more convenient to use.

Notice how both solutions have 2 degrees of freedom. A mathe-
matician would refer to this as a coordinate transformation. With
the old valve, you and all other users had to perform this trans-
formation yourselves. With the new valve, this issue is resolved
permanently through mechanical means.

I hope these simple examples gave you an idea of what good
interfaces are about. If you design an interface, you should always
know your customers. What do they do? How do they think? How
will they utilize your product? This is of utmost importance. A
good interface is user-centric. It represents the way the user thinks
and conceals all the technical details.

11. Interfaces 55

Code Interfaces

Once again, understanding interfaces in general will enable you
to write much better code. It’s just the same as in the real-world
examples above. Try to follow the same principles. Figuring out
what the user really wants makes writing a well-designed interface
quite easy. Writing some user code examples will help you a lot, as
you’ll learn in the section [Test Driven Development] (TDD).

Always define an interface from the user’s perspective. What does
the user want? How does he want to use your code? These are
the important questions to ask. Don’t just blindly return the values
you have.

An interface that is designed from the engineer’s point of view is
usually poorly designed. It is designed from the wrong perspective.
An engineer’s interface is easy to implement but not necessarily
easy to use, as engineers tend to focus on what they have. They
lack the vision of what they could have. Thus, they miss the point
of a good interface. An engineer’s interface is like an old Nokia
phone. The shape and functionality were mostly determined by
the engineers’ preferences. The designers had little to say and were
only allowed to smooth out the edges slightly. Meanwhile, a good
interface is more like an iPhone. Here it was the other way around.
Designers instructed the engineers on the necessary tasks, resulting
in a phone with a user-friendly interface. This is how you should
design your interfaces. You need someone with a vision for how
your code should be utilized. Not just an engineer who excels at
implementing the code but lacks understanding of how to use it.

Interfaces are everywhere. Every function [Functions] or class
[Classes] has an external interface and utilizes multiple interfaces
from other functions or classes. This is why understanding good
interface design is paramount. Especially with classes, it is chal-
lenging to define a good interface that allows the user to perform
desired actions without revealing too many internal details of the

11. Interfaces 56

class. When working with functions, it is important to consider the
order in which function arguments should be arranged.

Example

This is a code example for a car. The car has a current speed and a
top_speed. However, the user of this code doesn’t know anything
about these attributes. He only sees the public interface containing
the methods accelerate, brake, and get_speed. He doesn’t know
anything about the implementation of this class.

1 class Car:

2 def __init__(self):

3 self._speed = 0

4 self._TOP_SPEED = 200

5

6 def accelerate(self, amount):

7 assert amount >= 0

8 self._speed = min(self._speed + amount, self._TOP\

9 _SPEED)

10

11 def brake(self, amount):

12 assert amount >= 0

13 self._speed = max(self._speed - amount, 0)

14

15 def get_speed(self):

16 return self._speed

APIs

“With a sufficient number of users of an Application Programmable
Interface (API), it does not matter what you promise in the contract;

11. Interfaces 57

all observable behaviors of your system will be dependent on by
somebody.” - Hyrum’s Law

If you are expecting a comprehensive chapter that explains all the
details of APIs, I’ll have to disappoint you. This is a vast topic, and
I can only scratch the surface here. I will only explain some of the
most important aspects of APIs that I could think of.

An API is an extremely important component of your software.
It is the public interface of your software. It is what everyone
sees and uses from the outside. Everything we discussed in the
interface section applies here as well, but in an API, it is crucial to
get everything right. Having a bad API will cost you a lot of money.
People won’t buy your product if the user experience is bad. They
would rather go to the company next door and buy their software.
“They even support emojis!” Yes, sadly enough, supporting emojis
is important nowadays for business reasons.

That was no joke, by the way. Apple once had an important
security fix in their latest update. The update includes new emojis.
For many users, emojis serve as a stronger motivation to install an
update compared to a security fix.

APIs are an extremely complex subject. Not so much for technical
reasons, but rather because you interact with users external to the
company. They use your code hidden underneath the API. Every
change you make in your code could potentially lead to a bug in
your client’s code. Even fixing a small bug in your own code. When
maintaining an API, you have exactly one task: Never, ever break
your clients’ code! Now you might think this is doable. But I can
promise you will have nightmares.

You are always allowed to add new functionality as long as you do
not alter the functionality implemented with the old syntax. The
old code is guaranteed to run exactly the same way as it did before,
but you can also utilize some new functionality. Vice versa, you
are never allowed to change or delete existing functionality. This
could result in compilation errors or, even worse, bugs in the user

11. Interfaces 58

code. And that’s when customers go on a rampage. “Up to now,
the code worked, but all of a sudden, it fails. What the **** did you
do?” If you don’t understand this harsh reaction, you’ve never had
a work colleague randomly break your code once in a while. You
would feel exactly the same.

Adding more functionality

You want to add a new option to one of your API functions, but
there is a lot of existing customer code. This code does not currently
utilize this new option and won’t use it in the future. How can you
add this option without breaking this old user code?

The answer is default arguments. The current behavior is set to
be the default. After the update, the user can select an alternative
option within the function call. This works in all modern program-
ming languages. You don’t even need an if statement.

Let’s make a brief example. Let’s consider the following function:

1 # version 1.0

2 def my_super_function(arg1):

3 return arg1

We can easily modify this function with the following code. We
added a flag (arg2) that alters the functionality. The function now
only returns the arg1, if arg2 is set to True.

1 # version 1.1

2 def my_super_function(arg1, arg2=True)

3 if arg2:

4 return arg1

However, you can also omit the arg2, and the functionality remains
the same as it was before the code was changed.

11. Interfaces 59

1 my_super_funtion("hello")

returns "hello", regardless of the version number.

Removing functionality, on the other hand, is really hard. This
inevitably changes the behavior of existing functionality. You are
not allowed to do so except under very special circumstances, as
explained in the next section.

Semantic Versioning

APIs have version numbers. These are 2 or 3 numbers separated
by dots. For example, “3.11.2” was the latest Python version at the
time of writing. “3” represents the major version, “11” represents
the minor version, and “2” represents the trace. The trace is only
used in larger projects.

Every time you make a new release, you increase the version
number.

• For bug fixes or internal improvements, you increment the
trace number. This is for all kinds of changes that the user
shouldn’t notice or probably doesn’t care about. The user
should be able to switch to software with a higher or lower
trace version without any issues.

• The minor version number is increased for new features. The
changes explained so far are still backward compatible as they
don’t alter any existing functionality.

• The really big disaster begins with major version changes.
Sometimes this is required. And it is dreadful. You might
think that it’s not so much effort for the customers to change
some code. “HA!” Think again. Migrating most of the Python
2 code to the major version 3 took 12 years, and support
for Python 2 was only discontinued a few years ago. The
transition was quite a nightmare because many available

11. Interfaces 60

libraries had not been updated yet. Users simply don’t have
time to update their code to a new major version of your
library. So, if you don’t want to lose them, you should make
sure you don’t break the old interface. Only increase the
major version of your software if it is absolutely necessary.

Usually, companies support multiple API versions simultaneously.
They know that their users need time to adapt to the new version.
Some users will never adapt at all. They are forced to support the
old API versions for many more years, even though a better API is
available.

Orthogonality

Orthogonality is a mathematical concept. It has been used in
software engineering by Thomas and Hunt in their highly recom-
mended book “The Pragmatic Programmer” [citation: The Prag-
matic Programmer]. Orthogonality states that two objects are at
a right angle in the current coordinate system. The first part of
this sentence may seem intuitive, but what about the coordinate
system…? Let me explain code orthogonality by providing a brief
example that is familiar to everyone.

// TODO search images without copy right

On the left-hand side, we have old-school water taps. The user has 2
degrees of freedom (if you’re not into math: 2 function arguments),
one for the amount of cold water and one for the amount of warm
water. However, this is not what the user typically desires. It turns
out that the user wants to be able to control the two degrees of
freedom differently. He wants to control both the total amount and
temperature of the water. The orthogonal solution from the user’s
perspective is shown on the right-hand side. The solution on the
left-hand side is outdated. In the engineer’s coordinate system, it is
orthogonal. However, nowadays, users have higher requirements

11. Interfaces 61

and are no longer satisfied with the engineers’ solutions. We expect
this coordinate transformation into the user’s coordinate system to
be performed within the water tab.

In software engineering, we encounter exactly the same phe-
nomenon. We have a downstream person (user) and an upstream
person (developer). Both want to work with orthogonal data, but
they may be operating in different coordinate systems. Now, it is
always the upstream person’s job to transform the output to make
the data orthogonal in the downstream person’s coordinate system.
In similar cases, it is always the upstream person’s duty to make the
downstream person’s life as comfortable as possible by converting
the data handed over. This also makes sense from an economic
standpoint: there is only one developer (upstream person), but
many users (downstream persons). So, if the developer handles the
coordinate transformation, only one person (or team) needs to do it,
as opposed to all users having to do it themselves if the developers
don’t take on this task.

It may not always be obvious how the downstream would like
an interface to look. When in doubt, the upstream should return
the data in the most general representation. Make sure that no
implementation details leak into the interface, even though this is
sometimes easier said than done. This general interface has the
highest likelihood of being orthogonal from the user’s perspective.
And try to minimize the interface as much as possible. Less is more.

Frequently, you cannot choose how the data looks when you work
with it. For example, if it originates from a third-party library.
The data at hand does not align well with the algorithm you
intend to use for your specific problem. In this case, you should
first orthogonalize the input data before continuing. Separating
the orthogonalization and algorithm steps is much simpler than
running an algorithm on a dataset that is not optimally set up from
the beginning. A common example is the coordinate transforma-
tion between spherical (r ϕ θ) and Cartesian (x y z)
coordinates. Some problems are easier to solve in one coordinate

11. Interfaces 62

system, while others are more easily solved in the other coordinate
system. In most cases, it’s best to first convert the data into the
appropriate coordinate system, rather than adapting the algorithm.
This keeps the algorithm and the coordinate transformation sepa-
rate, following the SRP.

Advantages of Orthogonal Systems

Working in an orthogonal system has many advantages:

• Errors propagate directly through the system and are easy to
find. They don’t spread out.

• Fixing these bugs is easier because the system is less fragile.
• Writing tests for an orthogonal system is easier.
• It decouples the code because the transformation acts as an
adapter.

Example of an adapter

Let’s say you have an electric sensor. It measures the amount of
light in the room by detecting a voltage. However, this voltage
is not the final value you want to work with. Instead, you want
to know the density of light, measured in watts per square meter
(W/m^2). So, you need a function that converts the voltage into
the desired units. You do this transformation once where you get
the measured voltage and this problem is solved once and for all.

1 def light_density_from_voltage(voltage):

2 lumen_per_volt = 10

3 return voltage * lumen_per_volt

Now, this function returns the orthogonal data for this specific
example. Of course, the transformation required in your code may
look completely different.

11. Interfaces 63

Copilot

Copilot is generally not very good at writing interfaces. Instead,
you should do this yourself and let Copilot fill in the gaps. This is
generally the better approach than writing comments and letting
Copilot define code based on them.

12. Naming
“And you will know, my name is the Lord!” – Samuel L. Jackson,
Pulp Fiction citing the bible“ [https://youtu.be/MBRoCdtZOYg]

This chapter is a futile attempt to help you find better names. If
you are not satisfied by my lousy explanations, I recommend the
book [The Art of Readable Code] which has some more detailed
explanations.

The importance of Names

How long does a football game last? This is a very innocent
question, although people may not agree on an answer. In Europe,
most people would say 90 minutes, while in the United States, 60
minutes is the common answer. The reason for these different
answers is very simple: names. There are two different sports that
share the same name. This can cause some confusion.

The example was cute. Mixing them up may cause amusement, but
it does not cause any harm. When it comes to city names, things
can get a little trickier. If you miss a job interview because you
drove to the wrong city named “Springfield” (this name is used
in The Simpsons because it is a very common name in the US),
it can be quite painful. For the police and healthcare system, it
becomes even worse. When there are individuals with identical
names present, it can become risky. If your namesake is a highly
dangerous criminal, the police may become really rough because
they are confused and think you could be dangerous. In a hospital,
there are issues with using names as an identifier, and so far,
there is no unique solution on how to solve it. Using the name

12. Naming 65

combined with the birth date works out quite well, but it is no
definite solution.

All these things happen for only one reason. Name collisions.
Various objects sharing the same name. Names are everything.
No matter what you look at, you can name it. A computer, desk,
printer, etc. This is the very foundation of our natural language.
Of every language. Including programming languages. In a
programming language, we define things by giving them a name.
Every variable, function, or class has a name. Every programming
construct has a name. You can use this name to search for it on
Google or Stack Overflow. If you don’t know the name, you’re in
trouble.

Choosing good names is paramount in programming. You certainly
don’t want to encounter name collisions as explained above. It
would cause a lot of confusion and could be the source of many
errors in the future. But there is much more to consider when
defining the name of an object. We are humans, and we need to be
able to read and understand the code. This would not be possible if
we used randomly generated names. We need names that provide
us with an understanding of an object’s purpose and characteristics.
This is the only way we can create a mental image of what the code
roughly does. It is necessary for everyone involved in the project
to understand the meanings of all these expressions. What kind of
properties does this object have? Here we can learn from the law.
In the law, every expression has a set of properties. We have to
do the same when writing software. This is the only way we can
prevent missunderstandings and ensure that everyone understands
the code.

Though, consistency in naming is more important than the actual
name. If someone came up with an imperfect name, you either
have to change it everywhere or stick to it.

Coming up with your own names is anything but easy. Especially
new programmers really struggle to find good names. There are

12. Naming 66

just too many possibilities for naming an object. But there are
some rules you can follow, and at least some of the names are quite
easy to find. Meanwhile, for other variables, even experienced
programmers have to think deeply. In fact, naming consumes a
significant portion of our programming time. We do it very often,
and there is often no obvious solution; there might be only some
vague recommendations. Or as Michael Feathers stated in his book
“Working Effectively with Legacy Code”:

“When naming a class, think about themethods that will eventually
reside in. The name should be good, but it doesn’t have to be
perfect.” [WELC p.340]

How to name things

As I already mentioned, naming is one of the most challenging
aspects of programming. I tried to collect and synthesize some rules
on the properties of good names. The result is a pretty long list of
unfortunately quite vague recommendations when naming things:

1. Names should be short yet clear. Thus, there is a constant
trade-off regarding the length of a name. Short names may
be unclear, while long names may indicate that the object is
difficult to describe. On the other hand, long names are not
as detrimental as unclear names. When in doubt, choose a
longer name. For example: Should you choose p, price or
price_of_apple? The answer is: it depends on the context.
As a rule of thumb, a variable name is fine if a new work
colleague can understand it.

2. Use the same words for creating a name that you would
use in a comment. If you use different words, either your
abstraction may be bad or your naming is inconsistent.

3. Think about how you would articulate a word in an everyday
conversation. Would you refer to it price of an apple or is

12. Naming 67

the context of your conversation clear enough that only price
is sufficient?

4. Classes and functions that adhere to the SRP are relatively
easy to name because they perform only one task. Vice versa,
if it’s difficult to find a suitable name, reconsider whether the
object adheres to the SRP and rewrite it accordingly.

5. set_color(7). What does 7 mean? Avoid using raw values
in your code. Plain values are referred to as Magic Numbers
because their meaning is not immediately apparent. Your
code should be understood! Always create a variable instead
of using magic numbers. It is better to use set_color(RED),
where RED is a constant or, even better, an enum [section
enums]. Both are much clearer.

6. Well-defined levels of abstraction result in clearly defined and
unique properties. This helpswith finding names. Maybe you
have created a level of abstraction that also exists in real life.
At the same time, functions and classes are required to be at a
single level of abstraction in order to fulfill the SRP. [chapter
levels of abstraction]

7. Name collisions between different libraries are common and
nothing to worry about. Use namespaces to distinguish them.
Use the from ... import * syntax in Python cautiously as
this removes this potentially crucial information about where
a function is defined.

8. Name collisions within the same library may occur occa-
sionally and need to be resolved. Rename or even refactor
one or both variables involved. They might perform very
similar functions and should be refactored into a single object.
Otherwise, you should be able to find clearly distinguishable
names.

9. Use names that are commonly used in real life. Ensure that
the object in the code and the actual object have very similar
properties. You should be able to communicate with a domain
expert about your code, and he should understand at least
some of your problems. If he doesn’t understand you, you

12. Naming 68

probably used names or a model that do not exist in reality.
You did a great job if a marketer understands your high-level
code and can provide you with useful feedback.

10. Objects have names that are easy to distinguish. Differences
in the names should be as early in the word as possible.
apple_price and orange_price are preferred over price_-

of_apple and price_of_orange, although this preference can
change if you have different properties of apples as well.

11. Use common English words that are familiar to everyone.
Avoid abbreviations unless they are commonly used in spo-
ken language, such as “CEO”, etc. Whether an abbreviation
is “commonly used” depends on the context.

12. You are allowed to adjust the language slightly and sometimes
disregard grammar rules. If you have many fish, you may
call them fishes to highlight the plural. Being able to
understand the meaning of the code is more important than
the usage of proper English. Natural languages have some
deficiencies when it comes to explaining things unambigu-
ously. The following code is perfectly viable in Python: for
fish in fishes.

13. Avoid using “if,” “and,” or “or” in the names of your variables,
functions, and classes. These concise terms may be appealing
to employ, but they clearly indicate a breach of the SRP.

14. When a variable is utilized extensively throughout the code,
it is important to name it thoughtfully. Consider using a
name provided by the marketing team or existing theories
and literature. If a variable is used for only about 5 lines,
even i, j, or k are fine.

15. The name of a function should clearly indicate its purpose.
There shouldn’t be any unexpected behavior hidden in the
code. For example, it shouldn’t interact with global states,
which is generally considered a poor practice.

16. snake_case notation is easier to read than camelCase or Pas-
calCase. This is why I use snake_case notation for variables
and functions and PascalCase for class definitions. Though

12. Naming 69

it is more important to stick to the rules established in an
ongoing project than coming up with your own notation.

17. Classes and functions should reveal their purpose through
their names. This relieves the developers from reading the
internals, thus saving a lot of time. The name should be a
part of the domain language.

18. Prefer explicit names over implicit names; choose hammer over
nail_smashing_rod. Avoid using generic terms such as “data,”
“information,” or “manager”. They don’t tell you anything.
The name server_can_start() is vague compared to can_-

listen_on_port().
19. Attach units to a variable name if they exist. For example,

timeout_duration_ms. Though, once again, consistency is
more important.

20. Avoid using negated terms (and preferably avoid booleans
altogether). is_not_empty is more difficult to read than
partially_full.

21. Normal reasoning should be able to help you understand how
an algorithm generally scales. A function size() should not
have a time complexity of O(n). If you want to create a
function that calculates the size in O(n) time complexity, you
should name it compute_size().

22. At times, it is suggested to use a trailing underscore character
for class variables. This is to distinguish them from local
variables. However, I think this is a sign of poor code. If
you require such a distinction, your methods are likely too
lengthy, and your class may be too large.

23. According to Robert C. Martin, high-level objects have short
names because they describe very general things. Low-level
objects have long names because they are very specific [clean
code?]. This rule, in my opinion, is quite inaccurate. It rather
depends whether the object is part of a well-known interface
or not. Generally names on interfaces are short because they
are commonly agreed upon. For example “sin” in the math
library.

12. Naming 70

Naming Antipatterns

Useles Words

Sometimes words within a name can be omitted without losing any
information. For instance, instead of using convert_to_string(),
the name to_string() is shorter and does not lose any crucial
information. Similarly, instead of using do_serve_loop(), the name
serve_loop() is just as clear. Similar words line manager do not add
anything to the name of a variable and can therefore be omitted.

Generic Names

Another problem is using overly generic names, as shown in the
following example:

1 class Rectangle {

2 def size():

3 # ...

4 }

What does size() exactly mean? It is a very generic name. Is it the
area or the length of one side? The name is not specific enough. The
name area()would be much better. Or length() if it represents the
length of one side.

Here are some examples of generic words and some more specific
alternatives. These examples are from the book [The Art of
Readable Code].

12. Naming 71

send deliver, dispatch, announce, distribute, route
find search, extract, locate, recover
start launch, create, begin, open
make create, set up, build, generate, compose, add,

new

Word Alternatives

It is quite common for the author of a code to struggle with naming
variables and opt for a very generic name. This, however, is really
bad practice. Names should be as specific as possible. It is okay to
use a generic name temporarily and replace it later when you are
more smarter. Avoid using generic names in your code. They are a
sign of laziness. Even Copilot can help you find better names.

Copilot

Naming is one of the most challenging tasks in programming, and
Copilot is a great aid. One thing you can do is write some code and
then let Copilot find appropriate names for you.

1 def print_states(states):

2 for a in states:

3 print(a)

Here a is clearly not an appropriate name. Writing a comment to
Copilot to search for a better name works out quite well.

1 for a in states:

2 # find a better name for this variable

Though Copilot needs some help to get started and I had to write
the beginning for in order to get the following suggestion:

12. Naming 72

1 for state in states:

2 print(state)

This is pretty much what was expected. The same works out for
function names as well.

1 def some_fancy_function_name(b, c):

2 return b + c

1 # suggest a better function name

2 def add(b, c):

3 return b + c

Part 2: Components of Code

13. Functions
“Functions should do one thing. They should do it well. And they
should do it only.” - Robert C. Martin [Clean Code, chapter 3]

Functions (and methods) are, along with classes, the backbone of
modern object-oriented (OO) software. People just don’t seem to
care about functions as much as they do about classes. They are
fairly simple to use, and there are only a few things to take care of.
Still, there is quite a lot to know about functions as well. We will
learn why functions must adhere to the SRP and should not have
any side effects.

Throughout this book, we will distinguish between functions and
methods, as is common practice among most authors. Even though
I would personally like to refer to both of them as functions since
they are essentially the same, just in slightly different contexts.
Most of the concepts I write about functions also apply to methods,
as they are very similar in many respects. Methods have access
to class variables, which are comparable to additional mutable
function arguments. If you regard them as such, almost all argu-
ments hold for both, functions andmethods. Remaining differences
should be clear from the context.

Do one thing only

Due to the [SRP], functions should only cover one level of ab-
straction. Therefore, they have to be short. As a rule of thumb,
functions should be at most about twenty lines long (that’s what fits
on my laptop screen without scrolling), although less than 10 lines
is certainly preferred because shorter functions are much easier to
understand. This is due to the fact that longer functions also contain

13. Functions 74

more variables. So the complexity of a function scales quadratically
with length!

There is absolutely nothing wrong with functions that cover only
one line of code. One-line functions are extremely useful for
enhancing code readability as they elevate all code to a consistent
level of abstraction. But this is something that many programmers
don’t consider.

Here is a very short code snippet:

1 #define enums for Color and Flavor

2 if fruit.color == Color.yellow and fruit.flavor == Flavor\

3 .sour:

4 make_lemonade(fruit)

This code is far from optimal. It is implicit. Of course, a fruit that
is yellow and sour is a lemonade. But it takes thinking and it is not
immediately clear. Let’s look at the following code instead:

1 def is_a_lemon(fruit):

2 return fruit.color == Color.yellow and fruit.flavor =\

3 = Flavor.sour

4

5 if is_a_lemon(fruit):

6 make_lemonade(fruit)

Here we refactored the relevant code into a function. It is only one
line, but it makes the code so much more readable.

Levels of indentation

“If you need more than 3 levels of indentation, you’re screwed
anyway, and should fix your program.” - Linus Torvalds

13. Functions 75

The easiest way to assess the complexity of a function is by
counting the number of levels of indentation. Having no or very
little indentation in your functions is always a very good sign. This
implies that there is hardly any complex logic concealed within a
single function. Having nested if/else, while, or for loops would
violate the SRP because the function has two tasks: resolving the
logical operator and performing other work. Having only a few
levels of indentation in a function automatically makes it easier to
name and understand. At the same time, one needs to get used to
the formatting of such code. Most code is typically written at the
first level of indentation.

A frequent problem is deeply nested if/else clauses.
[https://youtu.be/rHRbBXWT3Kc]

1 button = input("")

2 if button != "":

3 if not is_sleeping():

4 if not is_eating():

5 attack()

6 else:

7 print("Cannot fight while eating")

8 else:

9 print("Cannot fight while sleeping")

This code is very hard to understand. It has toomany negations. As
I mentioned earlier, there are too many levels of indentation. This
issue can be resolved by rearranging the if/else clauses. Avoid
letting them span across the entire codebase. Check if the button

is empty and return if it is.

13. Functions 76

1 button = input("")

2 if button == "":

3 return

4 if not is_sleeping():

5 if not is_eating():

6 attack()

7 else:

8 print("Cannot fight while eating")

9 else:

10 print("Cannot fight while sleeping")

We can apply this technique to the other if clauses as well. The
resulting code will look like this:

1 button = input("")

2 if button == "":

3 return

4 if is_sleeping():

5 print("Cannot fight while sleeping")

6 return

7 if is_eating():

8 print("Cannot fight while eating")

9 return

10 attack()

Assuming that this code is written inside a function, we have two
levels of indentation, so we are compliant with Linus Thorwalds’
rule.

With this technique, the code became much easier to read. Of
course, one could also use if/else clauses instead of the if...

return statements. Depending on the complexity of handling the
conditions, one could consolidate all conditions within a dedicated
function that performs all the necessary checks. Something like
this:

13. Functions 77

1 def can_fight(button, fighter):

2 if button == "":

3 return false

4 if is_sleeping(fighter):

5 print("Cannot fight while sleeping")

6 return false

7 if is_eating(fighter):

8 print("Cannot fight while eating")

9 return false

10 return true

Assuming that global variables are not used, I had to include the
fighter object as a function argument. Instead, one could have
also have written this code inside a class. But these are technical
details.

Anyway, we have seen some approaches on how to deal with nested
if/else clauses. There is usually no perfect solution, but at least
we have improved it significantly compared to the initial code.

Naming

Naming becomes less challenging (I would love to write “easier”,
but it’s never easy…) if you follow the rules below:

• The name is a summary of the function content.
• There are no hidden behaviors within a function.
• There is no unexpected behavior within a function.
• The entire function body is one level of abstraction lower than
the function name.

The following function clearly has a side effect:

13. Functions 78

1 counter = 0

2 def log_in(email_address):

3 counter +=1

4 check(email_address)

The function name does not indicate the presence of a hidden
counter, making this hidden behavior that should be avoided.
Additionally, side effects may lead to temporal coupling [see next
section] because the order of calling functions with side effects
matters.

A more suitable name for this function could be log_in_and_-

increase_counter, but this would reveal that the function performs
multiple tasks, contradicting the SRP. A function name should not
contain an and as this indicates a violation of the SRP.

Side effects can also become a significant issue when testing code.
When calling the function log_in twice, the value of counter will
be different each time. This will make the tests very fragile due to
temporal coupling. And as we will learn in the chapter on testing
[Writing better Codewith Tests], brittle tests are a strong indication
of poor code quality.

Temporal Coupling

Temporal coupling occurs when tasks can be performed in an
incorrect sequence. Sometimes the code enforces the correct order,
and sometimes it does not. Most notably, temporal order is not
enforced by classes. Class methods can usually be called in any
order. There is nothing enforcing the correct order. The class
variables are there all the time. Let me make a brief example:

13. Functions 79

1 class Shopping():

2 def get_money(self, amount):

3 self.money = amount

4

5 def create_shopping_list(self, shopping_list):

6 self.shopping_list = shopping_list

7

8 def go_shopping(self):

9 # use the shopping_list and money

Apparently you need to get money and create a shopping list before
you go shopping. The correct usage of this class is as follows:

1 shopping = Shopping()

2 shopping.get_money(50)

3 shopping.create_shopping_list(["apple", "banana"])

4 shopping.go_shopping()

This sequence of function calls follows the natural order of the
shopping process. First, you need money and a shopping list before
you go shopping. However, this order is not enforced by the code.
One could also swap two of the function calls as follows:

1 shopping = Shopping()

2 shopping.get_money(50)

3 shopping.go_shopping()

4 shopping.create_shopping_list(["apple", "banana"])

Now you go shopping before creating a shopping list. In fact, the
call to create_shopping_list is probably superfluous because the
shopping list might not be used anymore. Instead, you go shopping
with a shopping list, which is either empty or non-existent. Either
way, this behavior is apparently undesired. It would probably be
best to throw an exception in this case.

13. Functions 80

This is one of the drawbacks of OO code. Methods change the
state of the object. Therefore, it is very difficult to enforce that
the methods are called in the correct order.

One advantage of procedural code is that such issues are less
likely to occur. Code doesn’t always have to be OO. Sometimes,
other paradigms produce better code. Let’s examine the procedural
version of this code.

1 money = get_money(50)

2 shopping_list = create_shopping_list(["apple", "banana"])

3 go_shopping(money, shopping_list)

In this case, it is physically impossible to go shopping without
having a shopping list, as shown below:

1 money = get_money(50)

2 go_shopping(money, shopping_list)

3 shopping_list = create_shopping_list(["apple", "banana"])

After having swapped the last two lines, this code cannot be exe-
cuted anymore because the variable shopping_list is not initialized
at the go_shopping function call. When executing the code above,
you will get an error: NameError: name 'shopping_list' is not

defined. This prevents you from calling the functions in the wrong
order.

Long story short: Ensure that your functions never have side
effects. Functions andmethods should only affect the class instance
or, if necessary, mutable arguments. If possible, enforce temporal
order, for instance, by utilizing functional programming.

Another source for temporal coupling are global or static variables.

13. Functions 81

1 counter = 0

2 def log_in(email_address):

3 counter +=1

4 check(email_address)

Here, the value of the counter depends on how often log_in has
been called before. Now it might make sense to have such a counter
in your code; however, this may lead to all kinds of problems. For
example, when testing it [Testing?].

Number of Arguments

As for the length of the function, the number of arguments should
be kept to a minimum as well. This simplifies the function signif-
icantly. Having too many variables is always a sign of too little
cohesion while at the same time, the function becomes difficult to
understand. Here, I try to provide a rough estimate of the number
of variables a function or method may have. But this ultimately
depends on the overall complexity of the code, etc.

Note that member variables to methods behave like arguments to
functions. Therefore you have to add up method arguments and
member variables to get the total number of variables. And we
assume there are no global variables.

Now, there are very few functions with zero arguments. These
functions are the simplest; they always behave consistently.
There’s not much to test, but at the same time, there isn’t much
that such a function can do. Especially if it’s a pure function
[section Functional Programming] which doesn’t have any side
effects..

As a function has more arguments, it can encompass more func-
tionality. Yet, at the same time, it will become more complex.
Functions with one or two arguments are usually fairly easy

13. Functions 82

to handle and should cover most of the code. Functions with
three arguments are already quite complex. They are difficult to
understand and challenging to test.

Try to avoid functions with more than three arguments. This
shouldn’t be a significant burden. A plumber can manage to carry
all his tools with only two hands, thanks to the invention of the
toolbox. Why shouldn’t we be able to juggle everything with just 3
arguments? We can use our equivalent to a toolbox: the data class
(Python) or struct (C++) [Classes]. If you are struggling to fit all the
variables you require into three struct objects, it may be necessary
to rethink your function design.

When combining method arguments and member variables, it is
very easy to exceed the recommended limit of 3 variables. This is
the main reason why I don’t recommend using classes excessively.
Instead, I generally suggest opting for procedural or functional
programming. When dealing with classes with complex methods,
there should be as few class variables as possible. Otherwise, its
complexity will blow up [worker classes].

A method may access certain class variables. However, one
does not know this until one has read all of the methods and
sub-methods involved. Furthermore, one must check whether a
method modifies the class variables, unless it utilizes the C++ const

expression. It is advisable to minimize the total number of variables
in use. This is the only way to keep the code maintainable.

Following the SRP, functions can only be either a query or a com-
mand [https://en.wikipedia.org/wiki/Command%E2%80%93query_-
separation], but never both at the same time. In the best case
scenario, you save one line of code by avoiding an extra check.
But at the same time, you make the code more confusing because
handling two responsibilities is much harder than dealing with
just one. And potentially saving one line of code is not worth
violating the SRP. A common antipattern in this regard is returning
a boolean flag with a set command.

13. Functions 83

1 if set_node("money", 50):

2 go_shopping()

Here, the set_node function performs two actions simultaneously.
It sets a value and returns a boolean. This certainly doesn’t help
with understanding the code. I would find it better if set_node

raised an exception if it failed.

Copilot

Copilot can help reduce the number of arguments by structuring
them using dataclasses. But the suggested code is not always better.

Let’s say we have the following code:

1 def do_something(a, b):

2 return a + b

With the command put a and b into a dataclass, we receive the
following suggestion. Now, as I already mentioned, the suggestions
from Copilot are not always improvements. Whether such kind
of refactoring makes the code more readable is a highly specific
question and has to be decided by the reader.

1 @dataclass

2 class Numbers:

3 a: int

4 b: int

5

6 def do_something(numbers: Numbers):

7 return numbers.a + numbers.b

13. Functions 84

Output arguments

One very irritating thing is functions that alter the value of their
arguments. This is also a very common source of bugs as it is
something quite unexpected. Now, once again, in C++, one can
clarify this by specifying the type of the argument. One can pass the
argument by reference to make it modifiable, or by const reference
to make it non-modifiable. However, in other languages, this
clarity has to be inferred from the context of the function.

Changes to function arguments can be challenging to keep track
of. For this reason, a function should always modify at most the
first argument. Modifying two arguments violates the SRP and is
even more confusing. If you change the value of an argument, it
has to be the most important argument. It’s a dual-purpose input
and output argument. So, it has to be special. It has to be first.

Output arguments can be compared to class instance objects. They
are essentially both function arguments that may change their
values. Just that the class instance is obviously a very special
variable. The function acting on those variables may change the
value of the output argument or the class instance, thus potentially
causing side effects. This is sometimes necessary, but at the same
time, it is undesired behavior as it is difficult to keep track of.

As always, output arguments give you a lot of power when used
wisely. But at the same time, they can also be a source of very
unreadable code when used carelessly.

Return Values

Return values are, in my opinion, very normal, yet many OO
programmers tend to dislike them. These OO programmers work
with class methods that manipulate the existing class instances. But
return values have a distinct advantage as their intention is clearer.

13. Functions 85

It states: this is a new value. Compared to: This method may alter
a variable of the class instance. And once again, keep in mind the
SRP. A function should only have either a return value, an output
argument, or change a class instance. But never two of them at the
same time.

Return values are central in functional programming. In functional
programming, you are not allowed to alter the values of existing
objects. So, you don’t have the issue of function arguments
changing their values. The workaround are return values. They
have the advantage that it is obviously a new object with new
properties. For each state the code is in, there is a different set
of variables. You’ll never have to track the state of a variable
because each variable has a unique state. After every step of your
computation, you create a new variable so that you will never store
different information inside a single variable. You just create a new
one.

All together I think there is really nothing wrong with return
values. In performance-critical code, creating new objects all the
time may be a problem. But in most cases, I recommend working
with return values, rather than mutable objects. They are more
explicit and easier to understand.

Here is a small Python example. There are two ways to sort
elements in a list. You can either use the sorted function, which
returns a new list, or you can use the sort method, which changes
the list in place. I generally recommend using the sorted function
because it makes it clearer that the return value is a new list with
different properties than the function argument. When using the
sort function, the programmer may forget that the elements in the
list are now sorted.

13. Functions 86

1 L = [1, 6, 4, 3, 3]

2 sorted_L = sorted(L)

3 print(sorted_L)

4

5 L.sort()

6 print(L)

Summary

As a summary, I would like to emphasize the importance of
considering both the length of a function, but also the number
of arguments. This is especially true for methods and functions
that modify the value of a function argument. Changing function
arguments is delicate as it can cause significant confusion.

Return values are completely acceptable, even if someOOprogram-
mers tend to dislike them. Use return values every time the object
created is not too large to cause performance issues.

Copilot

Copilot is quite proficient at generating new functions from scratch.
The following code required only minimal guidance. The usage
of dependency injection [section Dependency Injection] with the
condition argument was also suggested by Copilot. I really like
Copilot for this part because I often forget how to use lambdas,
and sometimes it generates really nice code. The only question is
whether the code is truly performing as intended.

13. Functions 87

1 books = [

2 {'title': 'The Alchemist', 'author': 'Paulo Coelho', \

3 'price': 10.2},

4 {'title': 'The Prophet', 'author': 'Kahlil Gibran', '\

5 price': 12.3},

6 {'title': 'The Little Prince', 'author': 'Antoine de \

7 Saint-Exupery', 'price': 8.5}

8]

9

10 def print_books_where(condition):

11 for book in books:

12 if condition(book):

13 print(book['title'], book['author'], book['pr\

14 ice'])

15

16 def author_is(author):

17 return lambda book: book['author'] == author

18

19 print_books_where(author_is('Paulo Coelho'))

14. Classes
“I think it’s a new feature. Don’t tell anyone it was an accident.” —
Larry Wall

Classes are undoubtedly one of the cornerstones of modern code
and the essence of OO programming. Unless you are one of the
few functional programmers, chances are high that you use them
every day. Surpringly, there is very little written about classes in
the common literature beyond the fact that they should have high
cohesion, be small, etc. Therefore, it is time we had an in-depth
discussion about them.

One can distinguish between different types of classes based on the
methods and variables they utilize. Wewill try to understand when
a function or variable should be public or private, and I will explain
why plain getter and setter methods should generally be avoided.

Data Classes and Structs

The C programming language was specified well before object-
oriented programming was developed. It doesn’t support classes,
but it has something similar: structs. It is similar to a dataclass
in Python. A struct is a user-defined object that contains various
types of variables. It is also possible to nest structs within each
other. Structs are extremely useful because they allow us to store
various data together inside a single object. It’s like a toolbox. In
theory, you may also store functions within a struct, though this is
generally not done, at least not in C++. For storing variables and
methods simultaneously, we use classes.

In Python, the equivalent of a struct is a data class. Here is an
example of a dataclass:

14. Classes 89

1 from dataclasses import dataclass

2

3 @dataclass

4 class Person:

5 name: str

6 age: int

7 city: str

8

9 p = Person('John', 30, 'New York')

Nowadays, structs (or dataclasses) are not anymore as commonly
used. Especially the Java community was avoiding such kinds of
objects at all costs until they introduced record classes with Java 14
[https://docs.oracle.com/en/java/javase/17/language/records.html].
Though there is absolutely nothing wrong with structs. In fact,
structs are really helpful. Code without structs is like a plumber
without a toolbox. It’s quite unstructured.

Classes are very similar to structs. Besides some technical details,
the only real difference is the encapsulation of variables and func-
tions (methods) bymaking them private, as well as the introduction
of inheritance. You can decide for each variable or method whether
it should be public (accessible to the outside) or private (usable only
within a class). This makes classes strictly more powerful than
structs.

But more powerful is not always better. A gun is more powerful
than a knife, but simultaneously, it is also more dangerous. You can
shoot yourself in the foot. So, actually, it might not be the best idea
to own a gun because the dangers may outweigh the advantages.
With great power comes great responsibility!

14. Classes 90

Private or Public

If you are not accustomed to working with classes, this may be
very confusing. Why would you like to keep anything private at
all? Isn’t it easier to make everything public?

Indeed, this is a very important question. Once you are able to
create a class and immediately decide which members should be
private or public, you are already a fairly good programmer. To
put it briefly, it has to do with power once again. Making a variable
private reduces the control available to the user. Never give users
more power than necessary.

Let’s explore the reasons for having private variables and functions.
We need something where you only interact with the surface and
have very limited ways to engage with it. It’s not hard to find an
example. This description applies to almost everything around you.
Once again, we can take a look at a car. A car is a highly complex
object. It contains an engine, brakes, and many other parts. You
don’t even want to know. You only want to drive it. You need the
gas pedal, the brake pedal, and the steering wheel.

You have this absolutely massive object, and essentially, you can
only do three things with it: increase the speed, reduce the speed,
and change the direction. And miraculously, that’s all you need.
As long as your car is running, you don’t care about anything
else. I correct myself: you don’t want to know about anything else.
Everything else works automatically as it should. It’s like magic.
You don’t want to adjust the fuel pump, modify engine settings,
or tamper with the servo control of the steering wheel. It works,
and it’s fine. You don’t want to deal with the internal workings of
the car. You don’t even want to be able to take care of these parts.
These are the private parts of the car and should not be touched by
you. Only a mechanic should maintain them.

There is one very simple rule of thumb for determining which parts
of a class should be public or private. If a class has no functions,

14. Classes 91

it is a struct, and all variables should be public. Otherwise, as few
functions as possible should be public, and all variables should be
private. But we will look at this rule in more detail in the next
sections.

Different Kinds of Classes

I like to categorize classes by the number of variables and the
complexity of the functions they contain. Ensuring that your
classes fit into one of these categories is helpful for fulfilling the
SRP.

Some of the following class names, namely the worker class and
the delegating class, are not commonly used. I defined them by
myself because I believe it is crucial to differentiate between various
types of classes based on the number of variables and functions they
contain, as well as their complexity.

Note that all classes explained here, except for the data class, can
also be written as functions passing additional variables around.
Classes tend to grow too much and using only functions forces you
to write more cohesive code. This is a typical example of where
some feature (classes) makes your life easier, but at the same time
allows you to write worse code. The simple question is now: when
should you write a class, or replace it with a set of functions? This
is a very difficult question to answer. My answer is: I don’t know.
I just have a preferance for functions. I guess it’s a matter of taste.

The only case I know of where you need a class is when you need a
constructor and destructor. For example for memory management
with new and delete as done in C++ vectors.

14. Classes 92

Data Class

We have already briefly mentioned the data class (a.k.a. struct)
before. It has no member functions, and therefore, all variables
are public. It wouldn’t make sense to have private variables if
there are no functions because the variables wouldn’t be accessible
at all. The data class has no functionality by itself, other than a
constructor. But it is great for storing data. As mentioned in the
previous section, it’s like a toolbox, and the variables are the tools
inside. If a data class has more than about eight variables, it is
advisable to split up the data class into sub-classes. This enhances
the general overview in the toolbox.

1 from dataclasses import dataclass

2

3 @dataclass

4 class InventoryItem:

5 name: str

6 unit_price: float

7 quantity_on_hand: int = 0

Pure Method Classes

A pure method class may have no member variables at all. It
consists only of static public methods. In programming languages
as Java and C#, writing such classes is necessary once in a while
because every function must be implemented within a class. I
regard this as an OO obsession of these programming languages.
In other programming languages, however, there is not much need
for pure method classes. In C++ and Python, you can define the
corresponding functions as free-standing functions instead. In fact,
I prefer a set of free-standing functions over classes with only static
public methods, but I guess that’s to some degree a matter of taste.

14. Classes 93

1 class Math:

2 @staticmethod

3 def add(a, b):

4 return a + b

5

6 @staticmethod

7 def subtract(a, b):

8 return a - b

Delegating Class

The delegating class is a combination of a data class and a pure
method class. All variables are private, and all methods are
public, though they are not static as they use the private variables.
Calls to one of these methods are all delegated to one of the
member variables. Thus, mostmethods are all fairly simple, usually
containing only one or two lines of code. If the methods are longer,
consider using some helper functions.

A delegating class is similar to a car. It consists of many complex
parts, each with its own functionality. You may control all these
parts using a simple interface. Setting the temperature will simply
send the corresponding command to the air conditioner (AC),
which then needs to handle all the complex logic. Most likely,
the AC is the only part of the car that needs to know about the
temperature.

Note that in this example here, it was not necessary towrite a helper
function. I just did so as I saw it fit.

14. Classes 94

1 # This helper function could also be written as a method \

2 of the Car class. But

3 # as I've already mentioned before, I prefer free-standin\

4 g functions.

5 def _set_temperature(AC, temperature):

6 AC.turn_on()

7 AC.set_temperature(temperature)

8 # ...

9

10 class Car:

11 def __init__(self, AC, engine):

12 self._AC = AC

13 self._engine = engine

14 # ...

15

16 def set_temperature(self, temperature):

17 _set_temperature(self.AC, temperature)

18

19 def set_speed(self, speed):

20 self._engine.set_speed(speed)

21

22 # ...

Worker Class

Worker classes implement complex algorithms in your code. Some
people may argue that these are the only real classes. Most design
rules for classes apply specifically to worker classes. Worker classes
consist of very few private variables and no public variables. They
often include some rather complicated private methods and few
public methods. Worker classes are the only type of classes with
private methods. Other classes do not have complicated methods
to hide; they only hide variables.

This implies that worker classes are the only classes that perform

14. Classes 95

complex tasks that should be hidden from other programmers. At
the same time, worker classes are extremely dangerous. Excessive
complexity can be easily concealed within a single worker class,
making it incomprehensible to anyone. You have to ensure that
your worker classes are small and well-tested. In fact, a worker
class isn’t that different from a function, where the function argu-
ments correspond to the member variables. Therefore, a worker
class should never have more than around three member variables
and about 100 lines of code, depending on the general complexity
of the class. Preferably less. An alternative to a worker class is a set
of functions. Functions have to explicitly pass around the variables,
which might make the code easier to understand and test, even if
the code overall becomes slightly longer. This is a viable alternative
if the cohesiveness is not that high. As far as cohesiveness can be
measured.

As a general rule of thumb, one can say that a worker class has
become too complex if you struggle to write tests for it. This is
a clear indication that it’s time to break up the class into smaller
pieces. For more details, refer to the chapter on testing.

It is challenging to create a good example for a worker class that
is not overly complicated for this book. So I tried to create a
somewhat artificial one. Instead of this simple recursion, imagine
a highly complex algorithm that is difficult to understand.

1 class Worker:

2 def __init__(self):

3 self._data = [1, 2, 3]

4

5 def add_entry(self, number):

6 # some complicated logic

7 self._data.append(number)

8 self._data.sort()

9 self.read_out_entry()

10

14. Classes 96

11 def read_out_entry(self):

12 entry = self._data.pop()

13 print(self._data)

14 self.add_entry(entry)

Just for completeness, this class could be rewritten using only
functions as follows. We pass the data around as a function
argument instead of using a class variable.

1 def add_entry(number, data=[1,2,3]):

2 # some complicated logic

3 data.append(number)

4 data.sort()

5 read_out_entry(data)

6

7 def read_out_entry(data):

8 entry = data.pop()

9 print(data)

10 add_entry(entry, data)

Another example for a worker class are classes implementing
memory management in C++. For example the vector class or
smart pointers. Though these classes are somewhat special as they
rely on the constructor and destructor the take care of the memory
management. Contrary to most other worker classes, I don’t know
how to replace such a class using only functions and data classes as
the constructor and destructor are special functions of the class.

Abstract Base Class

The abstract base class (ABC in Python) has a different name in
every programming language. In Java, it’s called an Interface. This
class type defines only the interface (shape) of a class. It does
not contain an actual implementation or variables. It contains

14. Classes 97

only public method declarations. Variables are a hidden detail that
should not be defined in an interface. One must write classes that
inherit from this abstract base class in order to implement it. In
Python and other dynamically typed languages, you don’t need
interfaces, but they can make the code easier to understand. In
C++ and Java, it is crucial to use interfaces to split up the code
into smaller components, minimize compilation time, and enable
runtime polymorphism. We’ll go into more details in chapter
[Inheritance]

In Python, a class has to inherit from ABC to be an abstract base
class. The methods are all abstractmethod and they do not have
any implementation. The ABC defines an interface that several
programmers can implement with their own classes. This is
especially useful if you collaborate with other programmers as
everyone knows what they have to implement.

1 from abc import ABC, abstractmethod

2

3 class Animal(ABC):

4 @abstractmethod

5 def feed(self):

6 pass

An alternative to abstract base classes in Python is protocols. If
you want to understand the differences, I recommend watching
the following video [https://youtu.be/EVa5Wdcgl94]. I don’t have
a definitive opinion on whether to use abstract base classes or
protocols. And I don’t think it’s worth bothering about it unless you
are a really experienced programmer familiar with such details.

Implementation Class

This class inherits from a pure abstract base class defined above and
implements it. It contains public functions and may also include

14. Classes 98

member variables. It may be anything: a worker class, a delegating
class, or a pure function class. Though the pure function class is the
most common. This class is implementing an interface, and due to
the SRP, it shouldn’t do anything else.

1 class Sheep(Animal):

2 def feed(self):

3 print("Feeding a sheep with grass.")

The abstract base class Animal serves as the blueprint for the class
Sheep. Sheep must adhere to the pattern specified in Animal. Sheep
must implement all the functions defined in Animal. This makes
it somewhat foolproof as you’ll get a warning when misspelling a
method name or forgetting to implement a method.

Inheritance Classes

Let’s discuss the inheritance of non-abstract base classes. This
becomes much trickier. As there is quite a lot that can go wrong,
I advise against using it. For the sake of completeness, however, I
still write down my thoughts.

Inheritance classes typically are delegating classes. They can also
be worker classes, although this is not recommended due to the
complexity of the resulting class. However, as I mentioned before, I
generally do not recommend using inheritance, except for defining
interfaces. Anything you can achieve with inheritance can also be
accomplished through composition. Avoiding meddling with in-
heritance can potentially help you avoid a lot of trouble. I have read
some books that discuss various refactoring techniques and code
snippets that work perfectly well, except when using inheritance in
non-abstract base classes (or global variables) [WELC]. The main
problem usually arises from overriding base class functions, which
can cause all kinds of issues. Furthermore, you don’t really gain
anything by using this type of inheritance.

14. Classes 99

Here is one of the issues with using inheritance.

1 class Animal():

2 def feed(self):

3 print("Feeding meat.")

4

5 class Sheep(Animal):

6 def feed(self):

7 print("Feeding grass.")

Writing such code may seem attractive at first glance. You don’t
have to redefine the feed method for animals that eat meat. It’s
already implemented. But saving a few lines of code does not merit
code quality. Stability is. And this code is unstable. It is brittle. A
single typo can create a hard-to-track bug. Let’s assume you define
a method fed inside Sheep instead of feed. Then the sheep will
most likely be fed with meat, and there is no way the computer can
warn you. Inheritance allows you to reuse functions, so you only
need to write them once in the base class and not in the derived
classes. This, however, has the drawback that you don’t have to
overwrite it, and a small typo changes the method that you call.
This is in contrast to abstract base classes, where you are required
to override the base class method, and you will receive an error if
you make a typo in the method name.

In the case above, when using an abstract base class, this kind of
bug is not possible. The code is a little longer, but muchmore stable.
The following code will return an error message before executing
it because Lion does not implement the feed method.

14. Classes 100

1 from abc import ABC, abstractmethod

2

3 class Animal(ABC):

4 @abstractmethod

5 def feed(self):

6 pass

7

8 class Lion(Animal):

9 def fed(self):

10 # oops...

11 print("Feeding meat.")

12

13 if __name__ == "__main__":

14 lion = Lion()

This error prevents you from creating a bug that might be very hard
to track down, costing you a lot of time. Instead, you immediately
receive a message indicating that there is something wrong with
your code, TypeError: Can't instantiate abstract class Lion

with abstract method feed.

In C++ and Java, there is the override keyword, whereas in Python,
it is not an official language feature. But this only partially fixes the
problem. You may forget to specify that a function is override or
you may redefine a function entirely. Remember: We’re humans,
we make mistakes. These problems cannot occur when using
abstract base classes.

General Recommendations

It may be convenient to add a method to a data class or a variable
to a pure function class. However, this will quite certainly make
the code worse as it violates the SRP.

The most common error is mixing up the worker class and the del-
egating class. You can easily end up with a fairly complex function

14. Classes 101

within a delegation class that utilizes numerous member variables.
This design is flawed because the delegation class operates at a high
level of abstraction, while the worker class is intended to be a low-
level object. Mixing different levels of abstraction is detrimental.
Refactor the complex part into a separate class or function and call
it from the delegating class. This should do the job.

One step further

As you have seen, I like to have my classes as small as possible.
The best class is no class, with the exception being the data class.
The delegating class and the worker class can also be written as
a combination of data classes and functions. This may seem like
a very strict approach, but it is done so in the C programming
language, which is still in use for the linux kernel. If programming
in this way was really an issue, they would have changed the
programming language a long time ago.

The only things that requires classes because of their destructors
are the C++ vectors and smart pointers. Furthermore I don’t know
how to implement some of the design patterns [Design Patterns
book], [chapter Design Patterns] without classes.

Functions vs. Methods

There are two ways to modify the value of an exisitng object using
a function. Either pass a mutable object as an output argument or
use a class instance where the function is a method acting on it.
The two cases look like this:

1 a.b() # method

2 b(a) # function

14. Classes 102

There are only minor differences between these two lines of code.
Let’s compare them:

• In both lines, the variable a can be modified. Which is not
necessarily a good thing, though.

• The function has only access to the public variables of a,
while the method can also access its private variables.

• In C++, const can be applied in both cases.

In summary, there are no significant differences. The free-standing
function b(a) offers slightly better decoupling and should therefore
be preferred. But ultimately, it all comes down to readability.
Which version is easier to understand? The function or the
method? Let’s look at the following code:

1 # Function:

2 if contains(names, "Donald"):

3 print("Make America great again")

4 # Or method:

5 if names.contains("Barak"):

6 print("Yes we can")

In this case, I certainly prefer the second option, using a method,
due to the readability point of view. It’s so much clearer. It reads
like an English sentence. From a coding perspective, I prefer the
first option utilizing the function. This is one of the cases where
the principles explained in this book will not provide a definitive
answer on how to address this problem. It can only provide
arguments for one solution or the other. You will eventually
have to make a judgment call on your own. If you can identify
strong arguments for and against both solutions, you are a good
programmer. Once you manage to make the right decision, you
are a great programmer.

In software engineering, there are always numerous factors to
consider. This was just another example. Probably, there are more

14. Classes 103

arguments for one solution or the other that I may have missed.
This might render the entire discussion obsolete.

Constructors and Destructors

Constructors and destructors are very special methods. The con-
structor is called once every time an object is created. This has
severe consequences that many software developers are not aware
of. Most notably, writing tests can become nearly impossible if
the constructor contains too much logic or has side effects. The
author of the code may have assumed that there would be only
one class instance and planned accordingly. This might be true in
his particular part of the code he wrote. However, his assumption
might break down when writing unit tests [section unit tests].
When creating objects, it is important to ensure that they can exist
independently without any interactions between them. Otherwise,
your tests will become very fragile.

Therefore, always ensure that the usage of a constructor is fool-
proof. A constructor should be as simple as possible. Every
action performed by a constructor, such as allocating memory
or opening a file, must be reversed by the destructor. This
constructor/destructor pair is the only way to guarantee that all
effects of the constructor are undone. This also means that you
should not define a counter in the constructor unless the effect is
undone in the destructor. Preferably, your code follows the “rule
of zero” [effective C++, Scott Meyers]: do not define any custom
constructors or destructors. Leave this to the compiler. It will make
your code much easier. [https://youtu.be/9BM5LAvNtus?t=2438]
In data classes, for instance, a constructor is auto generated.

The only real functionality which has to be implemented inside a
constructor and destructor that I know of, is memory management.
In C++, you have to use the new and delete operators to allocate

14. Classes 104

and deallocate memory and the best way to do this is inside the
constructor and destructor.

The following code creates a counter for the class instances. It
looks neat and it might be useful to have such a counter at times.
However, it will be challenging to test this counter. Every time you
add a new test case or change the order of the tests, the counter
values will change. When you change the order of test execution,
your tests will break.

1 from itertools import count

2

3 class Obj(object):

4 _ids = count(0)

5

6 def __init__(self):

7 self.id = next(self._ids)

8

9 obj0 = Obj()

10 print(obj0.id) # prints 0

11 obj1 = Obj()

12 print(obj1.id) # prints 1

You will witness what I said here once you write a complex
constructor and attempt to write unit tests for it. It is already
apparent that in a random test case, you will need to define a
variable obj with a somewhat arbitrary value 24. This is a clear
indication that something is wrong.

1 # Somewhere in your tests. This looks wrong!

2 assert obj.id == 24

Now, if you add onemore class instance before this line, the counter
will change, and the test will break. If you have a good intuition
for code, you might have also realized that this 24 is a very strange
number showing up out of the blue. There has to be something
wrong with it.

14. Classes 105

Getter and Setter Methods

In Java, it is common practice to define a class and make all its
variables private. Then the developer clicks a button in the IDE and
public getter and setter methods are automatically generated. One
for each variable. This is extremely widespread, and in my opinion,
an absolutely terrible habit. There is also a point in the C++ core
guidelines that supports my claim. You should “Avoid trivial getter
and setter functions”. [C.131 Cpp guidelines, C++ Core Guidelines
explained (Rainer Grimm)]

In order to understand my claim, we have to distinguish between
the different types of classes.

Data Classes

In data classes, all variables are public. Everyone can work directly
with the variables. There is no need for setter or getter functions.
Just access the variables directly.

The Java community may argue that this approach is unfavorable
because you should decouple everything. They were decoupling
the implementation of the class (the variable) from the interface
(the getter and setter). Yes, they do decouple them. But they might
have never really thought about the outcome. They decouple in a
significantly inferior manner compared to simply providing direct
access to the class variables.

Let me provide an example. We have the class Bottle. We look
only at the private variable _size (the underscore indicates private
variables in Python). For this discussion, we don’t need more
than one variable. Now first of all, it’s worth mentioning that
in the normal data class, size is a public variable, while in the
version with getters and setters, it becomes a private variable _size.
Accessing it should only be done through the getter and setter
functions; that’s the whole idea behind it.

14. Classes 106

1 class Bottle

2 def get_size(self):

3 return self._size

4 def set_size(self, size):

5 self._size = size

It is claimed that writing getters and setters has the following
advantages [https://www.w3schools.com/java/java_encapsula-
tion.asp]:

• Better control of class attributes and methods: I don’t fully
understand what this means. You can read and write the
variables in both cases.

• Class attributes can be made read-only (if you only use the
get method), or write-only (if you only use the set method):
If you want to make a variable read-only, you can make it
constant instead. This prevents changing the variable as well.
It is uncommon to have write only variables.

• Flexibility, the programmer can change one part of the code
without affecting other parts: This statement is incorrect, as
demonstrated below.

• Increased security of data: I am not sure what this point
exactly means. One advantage is that you can track a variable
with the debugger [chapter Bugs, Errors, Exceptions]. In fact,
this is the only advantage I see of writing getters and setters.
But having to do this is a clear indication that your code is
bad.

Let’s look at decoupling. You want to rename _size to _volume. It’s
easy to do; there are only two places where _size is used. Replace
them with _volume and you’re done.

14. Classes 107

1 class Bottle

2 def get_size(self):

3 return self._volume

4 def set_size(self, size):

5 self._volume = size

Do you see the problem? You didn’t make any improvements at
all. Everyone still uses the get_size method, which now returns
a _volume. This will cause a lot of confusion. You would have to
rename the getter and setter functions as well. It decoupled the
code only in theory. Writing getters and setters is only useful if the
value returned by the getter is the result of a calculation, elevating
the code to a higher level of abstraction. But then it’s no longer a
pure getter function… If youwant to decouple your code you should
write a proper adapter instead.

Having accessor methods for class variables only makes sense if
they elevate the code to a higher level of abstraction. Then you
really gain something. And it is really a form of decoupling. But
this is not possible in data classes as there is no abstraction that
could be decoupled.

Long story short: Avoid using plain getter and setter methods for
data classes. They don’t improve anything. Avoid using code
generation tools that automatically create getters and setters for
all variables.

Worker Classes

Member variables of a worker class should be private because they
should not be accessed from the outside. They should not be
accessed through raw setter or getter methods. Member variables
in a worker class should be encapsulated within the class and
accessed only by the methods of the class. These variables can be
considered as intermediate results of internal calculations. They

14. Classes 108

are not intended to be public. Neither directly nor via accessor
methods. Hence, there is certainly no reason to write setter
methods in worker classes. And there is hardly ever a reason to
write a pure getter method. And no, writing a getter method for
testing purposes is just bad programming practice.

Delegating Classes

The only class type that has something similar to plain getter and
setter methods are the delegating classes. But also here, you should
not write them. The names of these classes already contradict the
concept of getters and setters. Getters and setters are accessor
functions and not delegators. Accessors do not increase the level
of abstraction; meanwhile, this is exactly the idea of a delegating
class.

One example of a delegating class is a car, as we have already seen
before. You can adjust the temperature by invoking a set function.
But this is not a fundamental property that had been established
in the car production line. It’s simply an environmental parameter
regulated by the air conditioning system and a temperature sensor.

There is also no reason to access the air_conditioning via a get
method. We wanted to abstract it away. It would only make
sense to define a get method to measure the current temperature,
though one could argue wether get would be the right name for
this method. I would rather name it read_temperature. Anyway,
there is certainly no reason to write trivial getter or setter functions
for delegating classes. A function get_air_conditioningwould not
make any sense.

14. Classes 109

1 class Car:

2 def __init__(self, air_conditioning):

3 self.air_conditioning = air_conditioning

4

5 def set_temperature(self, temperature):

6 self.air_conditioning.set_temperature(temperature)

7

8 def read_temperature(self):

9 return self.air_conditioning.read_temperature()

I hope I managed to convince you not to write bare getter and setter
methods in any kind of classes. Don’t write getters and setters
because someone told you so. Only write them if you really found a
reason to do so. This should be the exception rather than the norm.

Coupling and Cohesion

[https://youtu.be/XQzEo1qag4A?t=159]

“Classes should have high cohesion within themselves and low
coupling between each other.” - Robert C. Martin

If you don’t understand these expressions, we could rewrite it as
follows: “There should be significant interaction among methods
and variables within classes and minimal interaction between
classes.” This is indeed a very important rule. However, like most
rules in software engineering, it has to be taken with a grain of salt.

As a very simple rule of thumb, you can search the whole class for
a variable. If most methods use this variable, it has high cohesion
and the variable should stay in the class. Variables that are only
used by very few methods should be removed from the class and
passed on as a function argument.

14. Classes 110

Worker Classes

The rule cited above by Robert C. Martin was intended for worker
classes. Worker classes are a common origin of poor code because
they often become overly complex. When breaking worker classes
into smaller pieces, this rule is very useful. It gives you a hint on
how to break them into pieces. Cluster your methods and variables
into small groups. There should be a lot of interaction within the
groups and little interaction between the groups. You may also
need to rewrite a fewmethods before dividing the class into smaller
parts. It will be worth the effort. If you manage to do this, it
will certainly make your code easier to understand. And you have
become a much better software engineer.

// get a better image without copy right

[fundamentals of software architecture p. 43, LCOM metric]

Two classes have low coupling if the number of interaction points
between them is relatively low. Ideally, every class completes its
work and then passes it on to the next one, similar to a relay race
or functional programming. Each class would have an interface
consisting of only one function. High coupling, on the other
hand, is like two classes playing ping-pong. The classes all have
a comprehensive interface containing numerous functions that call
each other several times in a specific order. This quickly becomes
terribly complex. The worst-case scenario is when two classes call
each other recursively. I could hardly imagine any worse code
than that! This is about the strongest coupling there is (besides
inheritance). Neither of the two classes can be changed without
also changing the other one. Such code is solid as a rock. You will
never be able to change them again.

I hope from this description you already understand that strong
coupling makes the code very difficult to understand. Addition-
ally, it also makes it brittle, which isn’t any better. It becomes
increasingly difficult to make any changes without breaking it.

14. Classes 111

Implementing new features will take a long time, and fixing bugs
is challenging because it is not clear what each class is supposed to
do exactly. Having strongly coupled code can become a nightmare.

There always has to be some amount of coupling [Decoupling].
Code cannot exist without it. It’s the glue holding everything
together. But the level of coupling between classes should be min-
imized because too much glue makes everything sticky. As long as
your code works, there is never too little coupling. Furthermore,
there are techniques to decouple your code. Creating an adapter
between two classes, for instance, can providemore flexibility. This
allows you to modify the classes independently, and you will only
need to adjust the adapter when necessary.

Anyway, the rule of high cohesion and low coupling is a good rule
of thumb when dealing with worker classes. If you stick to it, you
can properly structure your classes. One alternative would be using
some functions. Though also there, you have to pay attention that
there isn’t too much coupling between them.

Other class types

Maybe you have realized by nowwhy this rule about high cohesion
does not apply to all kinds of classes. A pure data class has very
little cohesion. The variables are only placed into a data structure
because they share some similar properties and are generally used
together. Like a hammer and a screw driver both being tools stored
in a tool box. Splitting a data class requires barely any effort at all.
You may split it however you like. A delegating class also has very
little cohesion. Nevertheless, these classes are extremely valuable
as they allow you to structure your code. This rule about cohesion
mostly applies to worker classes.

14. Classes 112

Inheritance

Coupling is one of the reasons why I recommend avoiding the
use of inheritance. Inheritance is one of the strongest coupling
available in software development. The derived class inherits all
the implementations of the base class functions. Vice versa, the
behavior of the base class functions may change if some function
calls are overridden by the derived class. Inheritance can obfuscate
the code, and removing inheritance at a later stage is extremely
challenging.

Static Expression

I discourage the use of static methods. It’s not terribly bad, but it’s
another example of these misguided object-oriented concepts. Let’s
first look at static methods. Isn’t it strange: you write a class with
all kinds of member variables, and then there is one static method
that doesn’t need any of these variables, yet it is still within the
class? Didn’t we say we wanted to keep classes small? It should
have high cohesion? A static method has as little cohesion as a
variable in a data class. Close to zero.

I fully understand that there are programming languages in which
functions must remain within a class, and static functions are the
only way to write standalone functions. In all other languages,
however, I recommend avoiding the use of static methods as they
do not add any additional functionality or improve the code. In
C++, you can mimic a static function using a namespace. The
resulting function call will be indistinguishable. At the same time,
you can split a namespace over many files, as is done for the std::
namespace, for example.

As we are discussing static functions, we can also discuss static
variables as used for instance in languages like C++. Static variables
are similar to singletons, and testing classes containing static

14. Classes 113

variables can be challenging. Avoid using singletons and static
variables. As soon as you start writing unit tests for static variables,
you’ll see why I discourage using them. They are like global
variables and can be changed everywhere. This can easily end up
in a nightmare.

Drawbacks of Classes

“You wanted a banana, but what you got was a gorilla holding the
banana and the entire jungle.” - Joe Armstrong

Classes are frequently misused for writing poor code without the
programmers realizing it. They just think it would be normal. The
most common problem is that classes become too large. It is just
too convenient to write everything inside a single class. Having
all the member variables readily available makes it easy to work
this way. In some cases, I had the feeling that the authors of
some code aimed to write all the code within a single class. This
is extremely problematic. If a single class covers the entire code,
then the member variables become … global variables! [Additional
Properties of Variables] Member variables are also called mini-
globals in [The Art of Readable Code] for this purpose. With too
many member variables the entire code turns into a Big Ball of
Mud. [https://en.wikipedia.org/wiki/Big_Ball_of_Mud]

But also for slightly smaller classes, member variables can be
problematic. They represent a hidden state. It is generally preferred
to pass variables as function arguments to functions and methods,
rather than having member variables. This makes the functions
easier to test since you don’t have to set up a class instance. Be
careful with class variables. Or even worse, inherited variables.
Keep your classes small to limit the scope of your class variables or
replace classes completely with functions, if possible.

If you write a class where all method implementations consist of a

14. Classes 114

single line (delegating class) or you have no methods at all (data
class), the number of class variables is not too critical. These
classes contain very little complexity. If you have more than about
6 to 8 member variables, you should consider organizing them
into subclasses. However, as soon as you have to write complex
methods, you have to be extremely careful, as things might other-
wise get out of hand. The combination of complex methods and
numerous member variables causes the complexity to skyrocket.
When dealing with complex methods, it is recommended to keep
the number of variables to one or two, as advised in the section
on worker classes. Or even better, replace the class with a few
functions if you can find a reasonable way to eliminate all member
variables. Writing tests will become much easier.

It’s a good rule of thumb to say that the class design is probably
okay as long as writing unit tests works out fine and you don’t feel
the urge to test private functions because the class implementation
is too complex. Make classes as small as possible while remaining
convenient to work with.

Conclusions

I believe we can agree on the fact that OO programming is im-
portant, and it is essential for everyone to know about it. While
classes have advantages, they are also a common source of bad
code. Classes have a tendency to grow and become a Big Ball of
Mud. Many people are simply unaware that this is an issue. As a
rule of thumb, we can say that your class design is acceptable as
long as writing tests is not problematic.

Follow the rule of “use composition, not inheritance”. Avoid using
friend classes and other complex OO constructs unless necessary
in your programming language. Unless you absolutely need them
for your code design. Inheritance introduces very strong coupling,

14. Classes 115

which should be avoided at all costs. The same can be said for
friend classes, albeit to a somewhat lesser extent.

Numerous guidelines are written only for worker classes. For
example, the rule that classes should have high cohesion. It seems
like most people overlooked the other types of classes. A data class
lacks cohesion, but it is still a valid object.

Avoid writing plain getter and setter functions for your classes.
They don’t improve anything over direct access to variables.

Furthermore, you should generally prefer functions over methods.
Though sometimes methods may make the code more intuitive to
read and are thus preferred. As always, life as a software engineer
is not easy. There are so many things to consider…

Copilot

Just as with functions, Copilot can also generate classes from
scratch. It is generally recommended towrite the name and perhaps
some properties of the class and let Copilot take care of the rest. In
this example, I only wrote class Car, and Copilot wrote the rest.

1 class Car():

2 def __init__(self, make, model, year):

3 self.make = make

4 self.model = model

5 self.year = year

6

7 def get_descriptive_name(self):

8 long_name = str(self.year) + ' ' + self.make + ' \

9 ' + self.model

10 return long_name.title()

The only drawback is that Copilot suggests the function
get_descriptive_name instead of defining the Pythonic

14. Classes 116

__str__ method. Furthermore, if you already know what
members and methods a class should have, you are probably faster
writing it yourself instead of asking Copilot to do it. Copilot is
only beneficial if you need ideas on how to structure your class.

15. Inheritance
“Inheritance is the base class of evil” [https://youtu.be/bIhUE5uUFOA]

Why inheritance should not be used: [https://youtu.be/da_Rvn0au-
g]

Inheritance is considered to be one of the integral parts of OO pro-
gramming and certainly one of the most widely used. Inheritance
is often described as an “is a” relationship. A sheep is an animal.
Therefore, the sheep class has to inherit from the animal class. But
as always, there is more to it.

Two Types of Inheritance

There are two types of inheritance: implementation inheritance
and interface inheritance. Interface inheritance is used to define
and implement interfaces. In C++, these base classes consist
of only pure virtual functions that will be implemented in the
derived classes. This type of inheritance is perfectly acceptable.
Actually, it is needed for many different purposes, such as runtime
polymorphism.

In Python the same behavior can be implementend using abstract
base classes. Even though you don’t need inheritance in Python for
polymorphism. It is sufficient that two classes implement the same
interface and then you can exchange them.

15. Inheritance 118

1 import abc

2 # abc stands for Abstract Base Class, a Python thing

3

4 class Base(abc.ABC):

5 @abc.abstractmethod

6 def print_a(self):

7 pass

8

9 class Derived(Base):

10 def print_a(self):

11 print("derived")

There is not much more to say about interface inheritance. It is a
good thing, and you should use it whenever more than one class
will implement this interface. Interface inheritance is a method to
define interfaces and implement them, though in python this is not
necessary. If you don’t like it, you may simply ignore it.

Implementation inheritance inherits the implementation of the base
class. Here, all kinds of different problemsmay occur that we’ll look
at in this section.

1 class Base:

2 def print_a(self):

3 print("base a")

4

5 def print_b(self):

6 print("base b")

7

8 class Derived(Base):

9 def print_a(self):

10 print("derived a")

15. Inheritance 119

Drawbacks of Inheritance

Implementation inheritance comes with several issues and should
be avoided. In the C++ Core Guidelines, there are at least a dozen
points to consider when working with implementation inheri-
tance [C++ Core Guidelines explained]. More modern languages
like Go and Rust don’t even support implementation inheritance.
[https://golangbot.com/inheritance/]

Tight Coupling

The most obvious problem with implementation inheritance is
that we may create very long inheritance chains. I once read an
article about a piece of code that had 10 levels of inheritance. It
turned out to be absolutely disastrous. There is hardly any stronger
coupling between code than in inheritance. It was impossible
to apply any changes nor to remove all the inheritance. The
inheritance structure resembled a tree, with its roots entangling all
the surrounding code. The code lost all its fluffiness and became
solid as a rock.

I consider the widespread use of implementation inheritance as an
outdated dogma. It is your responsibility to write code that is easy
to understand. Don’t let yourself get bothered by someone saying
that a sheep is an animal and you should, therefore, use inheritance.
It will almost certainly not improve the code, so you can conclude
the discussion. You are probably developing a model of a sheep that
doesn’t need to know about animals. You have to be pragmatic. If
a sheep does not need to be aware of the Animal class, there is no
justification for it to inherit from it.

15. Inheritance 120

Inheritance is Error-Prone

There are several other issues with inheritance. This is already
evident from Michael Feathers’ book “Working Effectively with
Legacy Code”, where he provides numerous examples that he
aimed to refactor. In about half of the cases, there were issues
with inheritance or global variables because these things can come
out of nowhere. It’s just too easy to create bugs with inheritance.
One misspelled function will not override the base class function
as intended, potentially creating a bug. Even if you delete a
function from a derived class, the code will still compile because
of the presence of the base class function. Meanwhile, without
inheritance, you would get a compiler error for pretty much any
kind of typo.

Though it has to be said that with the override keyword or
attribute, this problem has been resolved in some programming
languages like C++ and Java. Still, I would recommend avoiding
the use of inheritance and always using override when necessary
to prevent nasty bugs.

Obscure code

Additionally, there is a problem with variables inherited from the
base class. These are nearly as detrimental as global variables. One
doesn’t know where they come from. Imagine a variable obtained
from 10 levels of inheritance. And there are dozens of methods that
can modify them. This is absolutely terrifying. With composition,
on the other hand, you would have to dig your way through all
the variables. This seems like a drawback at first sight, but it
turns out to be a distinct advantage as you always know exactly
where you are in the instance chain. For this reason, it is generally
not recommended to nest inheritance, and I recommend using
composition instead. And honestly, I don’t see why inheritance

15. Inheritance 121

should be used at all, except for defining interfaces. Code reuse
can be better implemented using composition or simple functions.

Implementation

The implementation of inheritance can be a complex task, espe-
cially for some of the early OO programming languages like C++.
In the early days, compilers struggled to handle many tasks. The
danger was very high that a programmer created very subtle bugs.
Even today, it is still challenging to use inheritance correctly in
some programming languages. Implementing inheritance in C++
requires a considerable amount of knowledge and care to prevent
bugs. It is fragile. Avoid fragile code.

// get a better image without copyright restrictions.

When using multiple inheritance, there is an additional issue
known as the diamond problem. Let’s say we have a base class
called A. B and C inherit from A. So far so good. Now there is a
class D inheriting from classes B and C. Classes A, B, and C all have a
function f implemented. Which function f should D use? The one
from B or the one from C?

This leads to all kinds of nasty ambiguities regarding which func-
tions should be used. For this reason, some languages, like Java,
do not support multiple inheritance. And while I consider single
inheritance to be a bad practice, multiple inheritance should defi-
nitely be avoided.

Overriden Baseclass Functions

Implementing inheritance properly can be challenging. Especially
when dealing with constructors and overridden functions, there is
quite a bit you have to know about v-tables and other technical
aspects. The chances of making errors are significant. This issue

15. Inheritance 122

can be avoided by refraining from using inheritance. Inheritance
is simply too error-prone. Though this is better in Python than in
C++.

Sometimes inheritance can be confusing. Let’s consider the follow-
ing example:

1 class Animal():

2 def feed(self):

3 print(f"eating {self.get_food()}")

4

5 def get_food(self):

6 return "grass"

7

8 class Lion(Animal):

9 def get_food(self):

10 return "meat"

11

12 if __name__ == "__main__":

13 lion = Lion()

14 lion.feed()

Is the lion now eating grass or meat? Of course, it’s eating
meat. Using overridden functions in the base class can quickly
become confusing. This is the simplest version of the Yo-yo
problem, [https://en.wikipedia.org/wiki/Yo-yo_problem] where
the programmer has to switch between reading the code of the
base class and the derived class in order to understand the code.
The derived class not only depends on the base class, it’s also the
other way around. By breaking the encapsulation of the base class,
we introduce a mutual dependency. This is so confusing; it is
dreadful. Please refrain from writing such code.

Of course, this can be avoided by using the final keyword in some
programming languages. But it is just another example of why,
in my opinion, inheritance should be avoided. It’s just another

15. Inheritance 123

fix for something that is inherently wrong. As I mentioned, in
my opinion, there is simply too much that can go wrong with
inheritance. Inheritance from a class should only be possible if it is
explicitly allowed.

In inheritance, the derived class inherits all the functions defined
in the base class. This might be more than what is actually
required. The interface of the derived class is larger than necessary.
This violates the Interface Segregation Principle [chapter SOLID
Principles]. Having to write tests for unused functions in the
interface is only the most obvious problem.

Advantages of Inheritance

There are quite little advantages, but none of them justify using
implementation inheritance. The only thing that I can think of
is code reuse. But it is not worth the drawbacks that come along
implementation inheritance, as mentioned above.

The only real use case of inheritance, in my opinion, is the defini-
tion of interfaces using interface inheritance.

Inheritance and Composition

[https://www.studysmarter.co.uk/explanations/computer-
science/computer-programming/inheritance-in-oops/]

To conclude this chapter, let me provide a brief example to illustrate
the distinctions between inheritance and composition. In the class
Lion, the lion can directly access the food object from the base
class.

15. Inheritance 124

1 class Animal():

2 def __init__(self, food):

3 self.food = food

4

5 class Lion(Animal):

6 def __init__(self):

7 super().__init__(food="meat")

8

9 lion = Lion()

10 print(lion.food)

In the class Car, the taxi has to access the power object through the
engine object.

1 class Engine():

2 def __init__(self, power):

3 self.power = power

4

5 class Car():

6 def __init__(self):

7 self.engine = Engine(power=322)

8

9 taxi = Car()

10 print(taxi.engine.power)

Now, there may be many programmers who prefer the code used
for the lion, for example, because it is shorter. But in my opinion,
this is very bad. The lion code is implicit. And implicit code should
generally be avoided because it is not as clear as explicit code. As
the Zen of Python states: “Explicit is better than implicit.” The code
used with the taxi is clearly preferred as it is explicit. Write a little
bit (one word!) more code inside the print statement, but the clarity
really makes up for it. The code using the taxi is much clearer
because it indicates the origin of the power variable. It is a variable
within the engine. This is the primary reason why I recommend

15. Inheritance 125

using composition instead of inheritance. It makes the code much
clearer. It is explicit.

If power is used frequently, you can also write a method for it,

1 def power(self):

2 return self.engine.power

Conclusions

You don’t gain much by using inheritance. Using composition is,
in most cases, a perfectly viable alternative. If your code looks
messy when you start using composition instead of inheritance,
you probably wrote messy code all along. You just didn’t see it
because the inheritance was hiding it. This is another negative
aspect. Composition generally makes the code more readable and
easier to understand. It is also less error-prone. And it is much
easier to test. Implementation inheritance is a common source of
poor code quality. It should generally be avoided.

There are also some more esoteric concepts, such as friend classes.
At first sight, friend classes seem like a good idea because they
make writing code easier. However, in the long term, this has
similar issues to making private variables public. In most cases,
it results in poorly written code that lacks proper encapsulation.
Just ignore friend classes and similar concepts and never look back.
There are very few cases where friend classes are truly benefi-
cial. [https://google.github.io/styleguide/cppguide.html#Friends].
Write your code using the most common language features, and
only consider using fancy language features if they genuinely
enhance your code.

16. Data Types
“Primitive obsession [https://refactoring.guru/smells/primitive-
obsession] is a code smell in which primitive data is used
excessively to represent data models.” - David Sackstein

There are hundreds of built-in data types. But using too many
primitive data types is also known as “Primitive Obsession”. Avoid
excessive use of built-in data types. Instead, you should use custom
types (classes) as much as possible. This makes the code more
readable and easier to write.

Using custom types (classes) is highly recommended. For example,
you should always use a class Money when appropriate and avoid
using floating-point numbers. Utilizing custom types enhances
the readability and simplifies the writing process of the code. It
prevents you from primitive obsessions.

Primitive obsession is a very common phenomenon. Integer values
are often used to represent time, even though there is typically a
dedicated time class in most programming languages. Strings are
used to store all kinds of information, as we will see in an example
below.

Here is a list of data types that I typically use. They are called
differently in most languages. I write the Python name and in
brackets the C++ name: floats, ints, lists (vectors), enums, Booleans,
strings, dicts (maps), trees, classes, (pointers).

I will provide explanations for all these types except floats, integers,
and classes. I don’t have much to say about floats and ints, except
that I typically avoid using unsigned ints, as advised by the Google
Style Guide. Classes are discussed in their own section due to their
significance.

16. Data Types 127

Lists

Lists are the workhorse in programming. Whenever you deal with
several values that should all be treated in the same way, they
belong in a list. I would like to emphasize the importance of being
treated equally. When working with a list, it is important to iterate
through all elements and perform the same operation on each of
them. If you only need one value from a list, it is likely that you
should not use a list.

Here is an example of how not to do it:

1 fruits = [‘apple’, 1.5, 3.1, ‘banana’, 0.8, 2.1]

2 print(fruits[4]) # ...?

I intentionally made this code so terrible for you to understand.
Strings and numbers cannot be equal objects, so they should not
be placed side by side in the same list. In C++, this kind of list
isn’t even possible because C++ vectors cannot contain objects of
different types. At least not without attending a highly advanced
course in C++ black magic. In Python, on the other hand, this code
is syntactically correct, and it is often tempting to write such a list.
Please resist this temptation!

Your code becomes really bad if you store different things in the
same list. The print(fruits[4]) in the code example above is
extremely error prone because you have to count the elements in
the list. This list does several things at once and it violates the single
responsibility principle (SRP) all by itself. Use data classes instead
[clases].

Apparently, three values inside this list always belong together. A
first improvement would be to use a list of lists,

16. Data Types 128

1 fruits = [[‘apple’, 1.5, 3.1], [‘banana’, 0.8, 2.1]]

This provides some structure to the list, making it less likely that
this data structure will be used incorrectly. This inner list is still far
from optimal. We should use a data class instead.

The code should be rewritten as follows:

1 @dataclass

2 class ShoppingItem:

3 name: str

4 weight: float

5 price: float

6

7 apples = ShoppingItem(name='apple', weight=1.5, price=3.1)

8 bananas = ShoppingItem(name='banana', weight=0.8, price=2\

9 .1)

10

11 shopping_list = [apples, bananas]

Now the code is much longer, but it is also much better. It is much
easier to read and understand. As we learned, the only quality
measures of code. All the elements inside the list are equal. All
of them are ShoppingItems. If you can do something, you should
iterate over all elements and treat them equally. The data structure
is now also pretty save. Correlated data is all stored together. It
is almost impossible to confuse the weight of the apple and the
banana. And it’s also pretty hard now to make an error when
creating the list.

We can summarize: Lists are very common. They should always
contain objects of equal meaning. If you want to create a list with
groups of objects, you should create a data class for these groups
and make a list of instances of these classes. If you only need to
access a single object from a list, it is likely that your code is bad.
Always iterate over the entire list and treat all elements equally.

16. Data Types 129

Enums

Enums are something that even many experienced software devel-
opers don’t know about. You don’t really need it. But they should
know that enums make your code much better. There are several
alternative methods to write code without utilizing enums. They
are all bad.

1 # 1. boolean:

2 is_blue = True

3

4 # 2. string:

5 favorite_color = "blue"

6

7 # 3. integer:

8 favorite_color = 7

9

10 # 4. class instance:

11 class Blue:

12 pass

13 favorite_color = Blue()

14

15 # 5. enum:

16 from enum import Enum

17 class Color(Enum):

18 BLUE = 1

19 favorite_color = Color.BLUE

The first four options all have some severe drawbacks.

Booleans

The first one is extremely ugly. What does is_blue = False

mean? Is it red? Invisible? Undefined? There are simply too

16. Data Types 130

many different options that can confuse the developer. Avoid using
booleans in general.

Strings

The second one looks reasonable at first sight. Just write "red" and
you have another color. But at the same time, it’s easy to introduce
bugs. If you write "blu" instead of "blue" you might introduce
a bug that could result in strange behavior. Without you noticing
either that you have a bug or where the error comes from. The
compiler won’t be able to help you with this bug. Avoid using
string comparisons as they are prone to errors.

Ints

Third option: 7? A color? No. Please, don’t do this to me. This
is an example of a magic number and should be avoided. You
would always have to look up the number corresponding to one
color. This would be very tedious and error prone. Unless it is a
well-known international color standard, for example RGB: blue =

RGB(0,0,255).

Classes

Fourth option: Using types is not the best choice in this case. It
can be verified using isinstance(blue, Blue), but this process is
laborious and not feasible in C++, for instance. Using classes in this
case does not offer any advantages, only drawbacks.

Enums

Fifth option: The best solution is certainly using an enum. Even
if it takes getting used to it. Enums may seem slightly unusual at

16. Data Types 131

first glance due to the Color:: prefix, and there is no way to alter
this. However, this code is really solid and foolproof. If you write
Color::BLU, you will get an error message because you most likely
did not define a color BLU inside the enum. This is infinitely better
than having a bug [Bugs, Errors, Exceptions]. Furthermore, most
Integrated Development Environments (IDEs) and programming
languages support auto-completion for enums. Gone are the times
when you had to look up magic values in the manual. Enums are
great. Use them wherever you define a selection from a limited
number of options.

Enums can only be used if you know all possible options when
writing the code. If the user can define custom options, string
comparison must be used. Though cases where you really have to
make string comparisons are rare. It is rare to encounter a situation
where you receive a random string and then invoke a function
based on its content. The only thing you usually have to do with
random strings is pass them on without altering them.

Booleans

“Have a seat, my son. There is something very important that I
have to tell you. If you hear it for the first time, it may be very
shocking. But it has to be said: Booleans are evil.”

“What? But… how…? This can’t be. Booleans are only a theoretical
construct. It’s everywhere. The entire binary system consists of
Boolean values. What do you mean?”

“Yes, of course, you are right. Let me explain. It’s somewhat similar
to alcohol. Alcohol does not do any harm if it is inside a bottle. You
can drink it and have a great time, maybe the best time of your life.
But at the same time, it can cause a car accident or start a pub
brawl. Humans can’t handle alcohol. This is why some people say
that alcohol is evil. There is a very similar issue with Booleans.

16. Data Types 132

Booleans can be used for great things. But at the same time, using
Booleans can lead to the creation of bugs. Humans struggle with
Booleans. They mix it up too often. And even worse than Booleans
lead to if statements. But okay, maybe we should not call them evil,
but dangerous.”

Of course, I may be exaggerating slightly. But there’s no denying:
Humans struggle with Booleans and if statements. They lead to
bugs. You will create bugs with if statements if you keep using
them. Here are some points to consider when working with if
statements:

• Good code design results in fewer if statements.
• Polymorphism can be utilized to avoid using if statements.
• Resolve if statements as early as possible. Use Dependency
Injection (DI) instead of booleans.

• Avoid nesting if statements. Excessive levels of indentation
are a sign of poor code quality.

• Avoid passing Booleans as function arguments.
• Consider using enums instead of booleans.
• Ensure that your unit tests cover all branches of if-else
statements.

• Avoid using traditional C++ or Java iterators. Looping over
iterators requires comparisons. Range-based loops are much
safer and easier to use.

Here is an example how to use DI instead of passing on booleans:

1 if __name__ == "__main__":

2 if "debug" in sys.argv:

3 reader = DebugReader()

4 else:

5 reader = Reader()

6 main(reader)

16. Data Types 133

Well yes, we didn’t get rid of all if statements. This will never
be possible. But further down in the code, there are no more
booleans. Instead you only have the reader object that you can
use polymorphically.

Match case statements

// This section really needs some consideration: When should a
switch/match be used?

In case you have a match case statement (a Pythonic expression, in
other languages called a switch statement), you should encapsulate
it inside a dedicated function or use a dictionary.

This is not how the code should look:

1 def do_a_lot_of_work():

2 # a lot of code here

3 # ...

4 city_name = "Zurich"

5 match city_name:

6 case "Zurich":

7 return 8000

8 case "Bern":

9 return 3000

This code is flawed for a very simple reason: it almost certainly
violates the SRP. The likelihood is high that this match case state-
ment will be repeated multiple times in your codebase. Instead, the
match case statement should be refactored into its own function.

16. Data Types 134

1 def post_code(city_name):

2 match city_name:

3 case "Zurich":

4 return 8000

5 case "Bern":

6 return 3000

7

8 print(post_code("Zurich"))

The best solution, in my opinion, is using a dictionary and aban-
doning match case statements altogether. This is shorter and easier
to read. If desired, you can still wrap the dictionary in a function.

1 post_codes = {

2 "Zurich": 8000,

3 "Bern": 3000,

4 }

5 print(post_codes["Zurich"])

For larger dictionaries, this may still appear quite verbose. But this
code will be hidden at a low level of abstraction.

Dictionaries can also be used polymorphically. Depending on the
key, it creates an object of a different type. This will prevent some
if statements in the future, as polymorphism generally does.

1 class Zurich:

2 def postcode(self):

3 return 8000

4

5 class Bern:

6 def postcode(self):

7 return 3000

8

9 cities = {

16. Data Types 135

10 "Zurich": Zurich(),

11 "Bern": Bern(),

12 }

13

14 zurich = cities["Zurich"]

15 print(zurich.postcode())

A little side remark: match case statements were only introduced
with Python 3.10. This is because they are not supposed to simply
replace the switch-case statements, as seen in C++ for example or
as shown in the examples here. [For the full story, please visit
https://youtu.be/ASRqxDGutpA]

In summary, one can say that match case statements are not bad
at all. Though they could easily be replaced by dictionaries, and
they should be wrapped inside a function to make them reusable
and adhere to the SRP. Additionally, they are a great match with
polymorphism in the creation of objects to prevent further if

statements.

For Loops

A long time ago, for loops required the use of booleans. Fortunately,
these times are long gone. I add this topic here as an example how
to get rid of boolean comparisons.

There are many ways how to implement for loops. And if you use
them, there are better and worse ways how to use them. Let’s start
with the classical C++ version:

16. Data Types 136

1 #include <vector>

2 #include <iostream>

3

4 std::vector<int> numbers = {1, 2, 3, 4, 5};

5 for (int i = 0; i < numbers.size(); i++) {

6 std::cout << numbers[i] << std::endl;

7 }

Note that I had to use C++ for this example. I wouldn’t know how
to write such a terrible for loop in Python. There is so much that
can go wrong here. You have the < sign which does a comparison.
And comparisons are dangerous because you can always mix up <

and <=.

One level better is this Python code:

1 numbers = [1, 2, 3, 4, 5]

2 for i in range(len(numbers)):

3 print(numbers[i])

Here we got rid of the comparison. But we still have the index i

which can be mixed up. Of course, there are times where you need
this index. But generally you can use an enumeration instead.

1 for i, number in enumerate(numbers):

2 print(i, number)

Assuming that you don’t need the index i, by far the best code is
the following:

1 for number in numbers:

2 print(number)

Here you don’t need any comparison nor an index.

16. Data Types 137

Filtering Lists

Another question: how should you filter lists?. The classical way is
to use a for loop and an if statement. But there are two alternatives:
list comprehensions and lambdas. Both solutions are quite similar
(even in performance), so feel free to use the one you prefer.

1 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

2 odds = [n for n in numbers if n % 2 == 1]

3 ten_times = [n*10 for n in odds]

4 plus_five = [n+5 for n in ten_times]

5 average = sum(plus_five) / len(plus_five)

6 print(average)

1 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

2 plus_five = map(lambda n: n+5,

3 map(lambda n: n*10,

4 filter(lambda n: n % 2 == 1, numbers)))

5 five_list = list(plus_five)

6 average = sum(five_list)/len(list(five_list))

7 print(average)

Note that the filtering part of both versions could be written in a
single line if you insist. And I’m not showing the loop version as
it’s too much code.

Strings

“You should never use two different languages in a single file.
English is also a language.” - Adapted from Robert C. Martin [Clean
Code]

After pointers and Booleans, strings are arguably the third most
error-prone data type. Programmers often compare two strings

16. Data Types 138

for equality. One of them is written in plain text in the code.
A string possibly twenty characters long. If a single character is
wrong, you have a bug, and there is no way the computer is able to
know and warn you. Of course, you can make this code work. But
it is extremely brittle. You should eliminate such risks whenever
possible. String comparison is a potential source of errors, and
we should strive to avoid them whenever feasible. Remember,
programming is all about avoiding potential sources of errors. As
we have already seen, you should always consider using enums if
you want to perform string comparisons.

Stringly typed objects

Some people even start to encode all kinds of logic into strings. This
is dreadful. At times, this is also referred to as “stringly typed”
to emphasize the importance of using appropriate types instead of
strings. // See also “primitive obsession”

Here are some examples of strings storing all kind
of information that shouldn’t be stored as strings
[https://www.hanselman.com/blog/stringly-typed-vs-strongly-
typed]:

1 robot.move("1","2")

2 # Should be int like 1 and 2, and maybe better a point

3

4 getattr(dog, "bark")

5 # Dispatching a method passing in a string that is the me\

6 thod's name. dog.Bark()

7

8 message.push("transaction_completed")

9 # Could be an enum

I found the following example in the book “Clean Code” on page
128, where Robert C.Martin (a.k.a. Uncle Bob) did some refactoring

16. Data Types 139

on a unit test. I quite like the book. It served as a model for this
book here. But in this example, he somehow went haywire. What
he explained all made sense, but he missed that one should never
write code the way he did.

He encoded five Boolean states {heater_state, blower_state,

cooler_state, hi_temp_alarm, low_temp_alarm} into a single
string "hbCHl", where each character encodes whether it was too
hot or not, too cold or not, etc. Capital letters represent true, while
lowercase letters represent false. It’s such a beautiful example
of the kind of logic that can be implemented in strings. But he
completely missed the point. Strings should never ever be used to
encode logic. To make matters worse, the letter "h" is even used
twice. Like this, the code becomes even more fragile because the
state relies on the order of the characters.

The unit tests written by Uncle Bob look quite nice at first glance.
But it takes some knowledge to understand what these five char-
acters are supposed to mean. Without appropriate background
knowledge, it is impossible to understand the meaning of this
string. The order of the characters within this string may seem
arbitrary, but they must be in the correct sequence. This is not
something that should show up in a unit test nor in your code.

Now let’s consider how we could improve things. We have five
states that can each be either true or false. Writing a list with 5
Booleans is probably the first thought, something like water_state
= [False, False, True, True, False]. This is an improvement
over the string logic, but it still requires significant restructuring.
All elements in a list should be treated equally and accessed
simultaneously. But here, you will probably need only one element
at a time: needs_hot_water != water_state[0]. Accessing the first
element with [0] is a clear indication that we should not use a list
[section lists].

A better solution is to use a dataclass that stores five different
variables. One Boolean value replacing each character in the string

16. Data Types 140

above.

1 from dataclasses import dataclass

2

3 @dataclass

4 class WaterState{

5 heater_state: bool

6 blower_state: bool

7 cooler_state: bool

8 high_temp_alert: bool

9 low_temp_alert: bool

10 }

Still, this is not optimal yet. What does heater_state = true or =
false mean? Let’s define an enum instead to make the code more
readable.

1 from enum import Enum

2 from dataclasses import dataclass

3

4 class State(Enum):

5 on = True

6 off = False

7

8 @dataclass

9 class WaterState:

10 heater_state: State

11 blower_state: State

12 cooler_state: State

13 high_temp_alert: State

14 low_temp_alert: State

Now the heater_state can be either on or off. This is much more
intuitive to read.

16. Data Types 141

Once you found this solution, it looks so natural. This code is much
more readable than the encoded string. It is definitely worth the
extra effort required to write this struct and enum. The code has
now become significantly longer, but remember: we always code
for readability, not for the fewest lines of code.

The code utilizing this dataclass, including the unit tests, is very
straightforward. Opposite of the string solution, there is no need
for logic, comparison, or anything similar. It is simply obvious how
to use it.

1 if water_state.high_temp_alert == State.on:

2 print("Attention: the water is too hot")

Natural Language

Many software products are available in many different countries.
They have to be available in many languages. But you don’t want
the translator to write his translations into your code, nor does the
translator want to deal with your code. He wants to work with
only the text visible to the user. He wants the text to be placed in a
dedicated text file so that he knows exactly what to translate. There
is no arguingwith that. Thus, it is your job to extract all the human-
readable text from your code. Upon start-up, your software reads
this text file and assigns the various strings to the corresponding
variables. Selecting a different language is as easy as selecting a
different file.

Ultimately, you are left with barely any strings at all. You replaced
them with enums, proper logic, and a file containing human-
readable text. Only when reading or writing a text file do you
briefly have to deal with strings. Then you immediately convert
it into data. In theory, at least. For small projects, it is not always
worth the effort to convert all strings into objects or dedicated text
files.

16. Data Types 142

Dictionaries

When defining your variable, you have two different choices
on how to proceed. You may either use normal variables or a
dictionary (a map in C++).

1 a = 0

2 b = 1

1 vars = {"a" : 0, "b" : 1}

These lines do something very similar. They both assign the value
0 to a and the value 1 to b (okay, in the case of the dictionary, it
is rather "a", but you get my point). Yet, there is a fundamental
difference. In the first line, the programmer knows that he needs
variables a and b as he writes the code. In the second case, we
have a dynamic data structure. Maybe the programmer knew
that there would be "a" and "b" used as keys. Maybe he didn’t,
and these dictionary entries were generated by user input that the
programmer had no control over.

If the developer knows all the variables that are needed, it is
generally advisable to use normal variables. If the data originates
from an external source, such as a text file where he doesn’t the
content, he must use a dynamic data structure like a dictionary. At
first, this may sound a little confusing. But think about cooking
recipes. You might have a few recipes that you define in your
code, where the name of the recipe corresponds to the name of
the variable. Or, you can write a parser that reads them from a
cookbook into a dictionary. Here you have to use a dynamic data
structure because you don’t know in advance how the dishes are
called and what kind of ingredients will be needed.

Dictionaries are closely related to JSON and XML files. They are
essentially similar to a nested dictionary serialized into a string. If

16. Data Types 143

you ever need to read JSON files, the resulting data structure will
be a nested dictionary that you might further convert into nested
class instances.

Trees

It is not too often that I’ve had to create a tree myself, yet I
have been working on tree structures for a significant part of
my programming career. Trees are an extremely important data
structure. When dealing with a recursive data structure, it is highly
likely that you will be working with a tree. This allows you to
utilize many standard algorithms that are very efficient, typically
with a time complexity of O(N log(N)). If you implement your
own algorithms, ensure that they are recursive andwrite automated
tests that cover the corner cases.

Pointers

Python, as most other modern programming languages, doesn’t
use pointers. C++ on the other hand used pointers extensively.
Pointers were used to point to a specific location in your memory
and access the corresponding value. However, pointers are still
used to implement polymorphism. Pointers are arguably the most
powerful yet potentially risky objects in the programming world.
With pointers, pretty much anything can go wrong. Fortunately,
they are barely needed these days. Vectors and smart pointers have
implemented in C++ for and completely replaced pointers. Vectors,
for example, also use a pointer, but it is hidden deep inside their
implementation.

The only remnant where pointers are still needed for technical
reasons is interfaces. Use pointers only for interfaces and opt for

16. Data Types 144

modern smart pointers (unique pointer or shared pointer) and you
will be fine.

17. Properties of
Variables

Once again, things only got startedwith the introduction to the data
types. The hard part is not choosing a data type, but figuring out
how to deal with them. How to facilitate interaction between them.
Here, one can easily create a huge mess if things are not considered
properly. Even experienced programmers do not always know how
to structure them properly. It is challenging. And I’m trying to
explain to you at least some very fundamental ideas to look out for.

The most common way to structure data is by using nested classes
and lists, where one class contains instances of other classes.
There’s certainly nothing wrong with that, but sometimes there are
better solutions.

Variables do not only have a type, but they can also have ad-
ditional properties that we will explore in this chapter. They
can be compile-time constant, constant, mutable, member, static,
dynamic, global or several of them at once. All these various
types of variables have distinct scopes within which they can be
accessed and modified. As is often the case in programming,
it is very convenient to have access to a variable at all times,
similar to a global variable. At the same time, this approach is
very likely to result in poor code quality as this variable is tightly
coupling everything together. Therefore, you should always choose
a variable type that is just modifiable enough to work with but
doesn’t grant more accessibility than necessary.

17. Properties of Variables 146

Compile-time constant

Compile-time constants are the least powerful variable type. They
are known at the time you write the code and will never change
their value. In Python, there is no way to enforce const’ness. But
it is generally agreed upon that variables written in all uppercase
are constant and may not be changed, PI=3.14. In C++, there is the
const keyword that enforces const’ness of a variable. const double

pi=3.14. Now it is no longer possible to change the variable pi,
or the compiler will return an error. Keep these constants stored
separately and avoid cluttering your code. Otherwise, there is
nothing you can do wrong with them.

Runtime Constant

Compared to compile-time constants, runtime constants do not
know their values at the time of compilation. The values will be
assigned at runtime upon the creation of the object.

Once created, you can pass and copy them around as much as
you please. You are always guaranteed to deal with the same
object. You can even declare a constant global variable and avoid
the main issues associated with global variables. Though it is still
recommended to pass them around as function arguments instead.
If it’s global, it will be acting as a hidden state, making it much
harder to write tests.

Note that in functional programming, all variables are runtime
constant. The only way to change a variable, is to create a new one.
This is a severe restriction, but at the same time it makes reading
the code easier as you don’t have to consider output arguments.

17. Properties of Variables 147

Mutable Variables

“Immutable types are safer from bugs, easier to understand, and
more ready for change” - [https://web.mit.edu/6.005/www/fa15/classes/09-
immutability/]

In many ways, mutable variables can be compared to class in-
stances. They are both very powerful, yet at the same time, they
are tricky to deal with as they may change their values. This
can easily lead to bugs. On the other hand, writing code without
mutable variables (or class instances) is very challenging. If you
want to understand the level of difficulty, I can recommend you to
try functional programming. The problem with mutable variables
is, perhaps not surprisingly, their mutability. Values may change,
even if they are just a function argument. This makes it so hard to
keep track of their value.

One option is to work more with immutable objects. For example,
you can replace the following code:

1 prime_numbers = [11, 3, 7, 5, 2]

2 prime_numbers.sort()

with something that does not change the list. Instead it can return
a new list.

1 prime_numbers = [11, 3, 7, 5, 2]

2 sorted_prime_numbers = sorted(prime_numbers)

At first sight, the two options look pretty much equal. The first
one changes the list instance, while the second one returns a new
list. However, there is a quite distinct difference. The first one
passes a mutable variable, which is error-prone. Furthermore,
it reuses the variable, which is a minor violation of the SRP.
[https://youtu.be/I8UvQKvOSSw?t=2133]

17. Properties of Variables 148

Returning a new variable, as demonstrated in the second code
snippet, is a much safer option and is preferred. Furthermore, the
second version of the code is much clearer because the variable is
not reused. The different names create a clear distinction between
the unsorted and the sorted list.

On the other hand, the second solution may create a performance
bottleneck as it requires more memory if the initial value does
not go out of scope. This could pose a problem for large lists,
particularly within loops. Though this is usually not a significant
issue because the prime_numbers go out of scope, and the memory
will be recycled. Furthermore the sort function anyway requires
some memory.

Member Variables

Being a member variable is by far the most common property
of a variable. Yet, there is a lot that can go wrong as well, as
member variables are mutable variables simultaneously. Most
of the information you need to know is explained in the section
on classes [Classes]. As long as your class design is appropriate
(classes should be small!), the methods are well-designed (with no
unexpected side effects, as far as this is possible in a class…), you
are mostly fine with using member variables. Though you have to
be careful with them.

Member variables have essentially the same issue as global vari-
ables, but within a more restricted scope. They are a hidden state.
This is one reason why classes have to be small in order to limit
the extent of this hidden state. If the class becomes too big, the
member variables are very similar to global variables as they can
be accessed from almost anywhere in the code.

Passing output arguments to functions can make the code less
clear. The best solution would be passing around only immutable

17. Properties of Variables 149

variables. However, it would also be too difficult to code in this
manner. Functional programming works this way, but it is not too
wide spread, even though it exists longer than OO programming.
OO seems to strike a balance between the accessibility and privacy
of variables and functions. But you always have to be aware of this
andmake sure youmaintain the balance so that it doesn’t tip over to
the accessibility side. Keep your classes small and make everything
private that can be. When in doubt, use immutable objects.

Static Variables

Static variables are member variables that share the same value
across all class instances. Let’s briefly figure out when to use them.

If a static variable is const, one could also create a const variable
outside the class instead. Except if this is not allowed, as in Java,
for instance.

Having const static variables doesn’t make much sense as they can
also be stored outside of a class.

If a static variable is not constant, it is likely intended to modify the
value of the variable in all class instances simultaneously. This is
a side effect. This is dark magic! This is dreadful!! Never use dark
magic. Avoid using static variables.

And if you don’t believe me, try writing unit tests for a class that
contains static variables. You won’t be able to change the order
of the tests because it might cause them to fail. This is the very
definition of brittle.

Global Variables

You might have heard about global variables. That they are bad,
and you should never use them. This is indeed true. Let me provide

17. Properties of Variables 150

an everyday example to illustrate why this is the case.

Let’s say you have to give a bag to a friend. But you are not able to
meet. Now, your solution is to place it in the middle of a very busy
square, and he can pick it up later on. Are you now thinking…? No!
NO! Don’t even think about it! There is NOWAY this is ever going
to work. Everyone around can compromise the integrity of the bag.
And they will. Believe me, they certainly will. This is the problem
with global variables. Millions have tried this attempt before you,
and millions have failed. No one has found a solution on how to
safely work with global variables. Do NEVER use global variables.
If you believe that using a global variable is the only solution to
your problems, you should seek assistance to review your code and
address some fundamental issues. Relying on global variables will
only exacerbate the situation.

Of course, it’s slightly different if the bag weighs 1000 tons and
no one can move it. Not even Superman. This is not a variable
anymore. This is a constant. You define it once, and it will never
change. But even here, it is considered bad practice to make it
global. Pass the variables around as function arguments to make
the dependencies apparent.

Now, as you may have already realized, global variables are prob-
lematic because any line of code can alter their value. Everywhere.
You cannot rely on them. You never know if someone compro-
mises their integrity. This also makes the code incredibly hard to
understand, as the workflow becomes extremely entangled. All
of a sudden, there is temporal coupling between different function
calls if they modify this variable. You have to follow every trace
where the variable could be changed. This is the very definition of
spaghetti code. And once again, if you don’t believe me try writing
tests for code containing global variables. They will break all the
time.

The opposite of functions using global variables are pure functions.
Pure functions are functions that depend solely on their input

17. Properties of Variables 151

arguments and do not produce any side effects. You’ll always know
exactly what they do and can rely on. They will never change any
hidden state.

Comparison of Variable Properties

The variables we examined vary in terms of how easily they can be
changed. Starting with a local compile time constant that cannot
be changed and accessed only locally, to a global variable that
everyone can access and change. This level of accessibility must
be selected carefully for every variable you work with. You can
barely write code with only compile-time constants, but if you
use only global variables, you’ll soon end up with spaghetti code.
Generally, it’s best to choose variables with the least possible effects
that still allow you to implement what you want. Prefer too little
accessibility over too much. You can still increase it later on.

Here is a rough list of how variable types are sorted by the
accessibility they have, starting with the most accessible:

Compile-Time Constant < Constant < Immutable Object < Mutable
Object < Class Variable < Inherited Variable < Singleton = Global
Variable

There is certainly nothing wrong with constants, especially with
compile-time constants. It’s just that they can’t do much. They
are just there and do nothing. They store a fixed value, and you
are always free to read it. If you enjoy working with constant
or immutable objects, I recommend functional programming. In
functional programming, everything is constant.

Immutable (but non-constant) objects can only be used within the
current scope. When passed as a function argument, their value
cannot be changed. If you use immutable objects, you cannot have
output arguments, which, in my opinion, is generally a good thing.
Due to the SRP, a function should change the value of only one

17. Properties of Variables 152

variable, and in my opinion, this should be the return value because
it is more evident what the code does. In general, you should avoid
output arguments anyway. The only difference to constant objects
is that immutable objects can be reassigned to a different value.

With mutable objects, you have to be careful because it may be
unexpected that a function call changes the value of an argument.
Make sure your functions modify at most the value of the first
argument, as altering other arguments can lead to confusion. This
is not a strict law, but rather a convention. Making multiple
changes through a single function call is also a violation of the
SRP and should be avoided. If possible, create a new object instead
of modifying an existing one. The only reason I could think of
why one should use mutable objects is performance. Creating new
objects all the time may be slow. Though with modern compilers
this issue may be partially resolved.

Dealing with class variables can be quite tricky. There are too
many ways they can disrupt the workflow and cause side effects.
They may be used, of course, but I provide detailed explanations in
the chapter on classes [Classes] about the considerations that need
to be taken into account to avoid causing chaos. Class variables
and mutable objects both allow for modifying an object. At the
same time, this is also precisely why they are difficult to deal
with. Furthermore, class variables are accessible in a significantly
broader scope, throughout the entire class. This is fine for small
classes, but one of the reasons why classes should not be too big.
Otherwise, the class has too much hidden state that will confuse
the reader.

Inherited variables are even worse than class variables. It is not
easy to see where an inherited variable is defined. It’s like receiving
a couple of tools without knowing their origin or ownership. If you
need to exchange a tool, youmay be unsure of what to do. Compare
this to a composition that provides you with an organized toolbox
to work with. Inherited variables make the code more difficult
to understand. And there’s no apparent reason why one should

17. Properties of Variables 153

use inheritance. And no, the few words saved are not a reason.
The number of words used is not a measure of the quality of code.
Readability is. And readability is certainly better with composition
than with inheritance. This is one of the main reasons why it’s
better not to use inheritance at all [Inheritance].

A Singleton is a class that can have at most one instance. If you
create objects of this class in several locations, they all share the
same class instance. There are very few cases where singletons
are truly useful. This is mostly the case for connections. It allows
multiple sections of your code to utilize the same connection to
your database, web server, mobile phone, etc. If you have limited
communication and only a few relatively large datasets, this is not
necessary. You wouldn’t gain much from using the singleton pat-
tern. Every class or library can connect to the database to retrieve
data when needed and disconnect when finished. For many small
database requests, using a singleton may significantly increase
performance. However, singletons are commonly abused to act
as a global variable. And this is really bad. For this reason, it is
generally discouraged to use singletons unless you truly understand
why you need one [https://github.com/97-things/97-things-every-
programmer-should-know/tree/master/en/thing_73].

Part 3: Testing

18. Introduction to
Testing

// if you don’t use TDD, insert errors into the production code
to test the tests. https://github.com/97-things/97-things-every-
programmer-should-know/tree/master/en/thing_95

“Algorithms + Data Structures = Software” Adapted from Niklaus
Wirth

“Abstractions + Testing = Engineering” - me

=> Software Engineering =Algorithms +Data Structures +Abstrac-
tions + Testing

It may sound surprising to you, but proper testing is an absolutely
essential step toward writing better code. It forces you to write
better code. In fact, this was the first chapter that I wrote for this
book, precisely for this reason. In the following chapters, we will
learn why tests are crucial, how to write them effectively, and what
to consider when creating tests.

A short story about tests

In the early days of software engineering, people wrote code and
packaged it into the software they were selling. Before the release,
the entire company had to pause all its work for two weeks to
manually verify that all the features were implemented correctly.
The software developers had to work night shifts to fix the bugs
as soon as possible because otherwise the release of the software
would be delayed.

18. Introduction to Testing 155

But that’s not the end of it. Of course, the company wants to make
more money. They added some minor features to this extensive
software and resold it. But here comes the problem: before they
could release the software and make a lot of money, they had to
redo the quality assurance process all over again. All the code that
has been changed since the last check needs to be tested. All the
code has to be tested because developers also changed the code used
by old features. Once again, the entire company will be on a two-
week freeze.

Obviously, this is highly frustrating. Before every release, you
have to test a feature that didn’t change at all, yet the team could
have introduced some bugs. Before every release, you waste two
weeks of your time on the same boring and repetitive task. Before
every release, the company spends millions to test things that have
already been tested several times before. And even worse, as the
software grows, the number of bugs increases. Some of them
even slip through the expensive testing. As the bugs become more
challenging to fix, the release gets delayed. It’s a nightmare.

During another terrible release, the company is on the verge of
collapsing. The CEO comes to meet the development team. His
tie is hanging loose, and he looks really tired. Apparently, it has
been days since he last slept. And he says, “Guys, it cannot go on
like this. These tests are killing us. We need the following: Here is a
screen. At any time during the development process, I want to have
a list of all the features that are currently not working according to
the specifications. If everything works, it should be green. If you
make this work, I’ll pay you one hundred million dollars.”

Silence filled the room. One hundredmillion?? Youmay laugh. But
there are a lot of companies that would actually pay this amount for
such a feature. It’s an enormous amount, but at the same time, the
efforts required for such a feature are incredible. There are millions
of lines of code and tens of thousands of features. It’s hard to find
anyone in the company who knows what the specifications are. It
will take years to get these automated tests working, and there is

18. Introduction to Testing 156

a possibility that the company will go bankrupt before completing
all the tests.

On the other hand, the benefits for the company would justify this
expenditure. At first, you might think, “Ah, spend one hundred
million for saving two weeks of testing??”. But there is so much
more to it.

1. You can release anytime the screen is green. If the teamworks
well, you can release every day (known as a “nightly build”).

2. If a customer needs a feature urgently, you can quickly
implement it and send him the nightly build.

3. There are fewer bugs because automated tests are more
reliable than manual testing.

And that’s only the marketing side of it. Equally important is the
developers’ perspective on this screen. So far, you have always
been afraid that you would break some feature when changing
code. A feature was working fine until suddenly, it broke down.
Nobody realized when it happened. You’ll spend the rest of your
work life in constant fear. This situation is worse than the zombie
apocalypse because you know it will never end. There is nothing
that can make you feel safe again. You may never want to touch
a single line of code again unless absolutely necessary, as you fear
breaking something.

But now, all of a sudden… magic! If you accidentally broke
a feature, you will know imediately. The screen indicates that
everything is alright! Your paranoia starts to fade. You regain
confidence in your code. In your abilities. In yourself! You can
start replacing all this old, ugly code that has been patched together
like a Frankenstein monster. Things were welded together by force
because the author was hesitant to rewrite the existing code to
create a cleaner solution. Suddenly, things look fine again.

You go to your CEO, give him a hug, and a box of chocolates.

18. Introduction to Testing 157

You thank him for saving your career and you repay him the one
hundred million dollars.

Did I exaggerate a little to make my point? Maybe. But the
exaggeration is smaller than you may think. The importance of
writing automated tests cannot be overestimated. Tests are no
guarantee to make your software project a success. But I can tell
you that projects without automated tests are doomed and will fail
sooner rather than later.

I hope this serves as sufficient motivation for you to read through
this chapter and genuinely attempt to write tests on your own. As
always, it’s not easy at the beginning. It takes used to writing tests.
Ask the internet and others for advice, and you’ll get a fairly good
idea of how to write them.

Test Example

Here is a small real-world example of how a test works.

1. Ensure that the coffee machine is clean and equipped with
coffee, water, and electricity. Press the coffee button. Wait
until the coffee has finished brewing.

2. Taste the coffee. If you like it, the test passes. Otherwise, it
fails.

3. Discard the cup and the leftover coffee.

This is it. Tests always consist of a few instructions that should
be easy to understand. The result of the test can only take on two
values. It passed (you liked the coffee) or it failed (you didn’t like
it). If it failed, you should call a technician to fix it. Or even better,
you could write a script that automatically calls the technician.

Tests consist of three stages that are conducted on a test bench.

18. Introduction to Testing 158

1. Setup: Prepare everything for the test
2. Execution: Check if the requirements are fulfilled
3. Tear-down: Clean up all the objects created for the test

Structure of a Software Test

In software, we follow the same process as with the coffee machine
in the example above. In every programming language, there is a
major testing library dedicated to this purpose. They all function
similarly, regardless of the programming language you use. The
Python testing library is called pytest.

Here is a small example of a class we want to test:

1 # inside vector.py

2 class Vector:

3 def __init__(self, x, y):

4 self.x = x

5 self.y = y

6 def distance_to(self, other):

7 return ((self.x-other.x)**2)**0.5

The corresponding test looks as follows:

1 # inside test_vector.py

2 from vector import Vector

3 import math

4

5 def test_distance(self):

6 v1 = Vector(0,0)

7 v2 = Vector(1,1)

8 assert math.isclose(v1.distance_to(v2), 2**0.5)

We can run the test in the command line with

18. Introduction to Testing 159

1 pytest

The relevant part of the output is this:

1 E assert False

2 E + where False = <built-in function isclose>(1.0, (\

3 2 ** 0.5))

Apparently I made a mistake in the implementation. The values
checked in isclose are different. In my calculation I forgot to take
the y-component into account. The correct implementation of the
distance_to function would be

1 def distance_to(self, other):

2 return ((self.x-other.x)**2 + (self.y-other.y)**2\

3)**0.5

Now the test passes.

In case you find the error message returned by the test not infor-
mative enough, you can can add an error message either separately
or directly to the assert.

There are different ways to change the error message of a failing
test. The easiest is adding a message to the assert as follows:

1 def test_function():

2 a = 1

3 b = 2

4 assert a == b, f"is = {a}, should = {b}"

This returns the following error message:

1 AssertionError: is = 1, should = 2

18. Introduction to Testing 160

As you can see, it’s pretty simple to write a test. Not only in Python.
There are testing libraries available for all major programming
languages. From the perspective of the testing library, you won’t
need to learn much more than what I have explained here for a
considerable period.

Once again, the difficulty lies not in the usability of the testing
framework. The much harder questions are what, when, and how
you should test. Let’s have a look at the code and try to understand.

When

Our class vector contains the member function distance_to. It
is part of the class interface and, therefore, must be tested. This
is the price you pay for public functions. Or rather, it’s a small
fraction of the price you pay for having public functions. Keep
functions private whenever possible. Private functions offer greater
flexibility since you can modify them freely without the need
for testing. For public functions, you have to ensure that the
interface remains the same. Ensuring a function is public means
committing to keeping the function unchanged. Avoid altering
existing interfaces; it requires a significant amount of work. You’d
have to adapt a lot of code, including your tests. Write tests for
public functions to assert that you don’t accidentally change their
behavior and break your code.

How

Inside the test_vector.py file, we write the test case. Before you
miss it, I’d like to emphasize the very first line. We want to test the
Vector class. We have to import the corresponding file (or library).

Next, we will define the test case. Every test case receives a unique
name. This name will appear in the test report if this test fails. It
is good practice to give the test case a name that explains what the

18. Introduction to Testing 161

test does. These names may be up to one line long if necessary.
You don’t use these names anywhere else, so it doesn’t hurt much
to have very long test names.

Inside the test, we start with the setup part. In order to test the
distance_to function, we need two vector objects v1 and v2. In the
following line, we calculate the distance between v1 and v2.

Now comes the execution of the test. We check if the test result is
correct.

Good inputs should thoroughly test the code. But they should also
be simple so that they are easy to read. For tests, it is even more
important that they are easy to read than for normal code. Tests
should not contain any complex logic. Just follow the pattern of
the example above. Set up, check, tear down. Make it as easy as
possible.

General Thoughts about Tests

“Tests can only prove the existence of bugs, not their absence.” -
Edsger Dijkstra

One of the main misunderstandings about tests is that they are
supposed to prove that there are no errors present. This corresponds
to Dijkstra’s fundamental attempt to mathematically prove that a
certain algorithm is correct. This failed miserably. Programming
is too complex for such fundamental approaches. They won’t
work because the complexity in any decent-sized program is too
high. It is simply impossible to prove that a program is correct.
And therefore, it is also impossible to write tests that prove that a
program is correct.

Many people believe that the sole purpose of writing tests is to
discover or prevent bugs. They couldn’t be further from the truth.
Of course this is one of the reasons why we write tests, but another

18. Introduction to Testing 162

reason is probably even more important: Tests enable us to fixate
the behavior of the code.

Double Entry Bookkeeping

Robert C.Martin compared programmingwith tests to double entry
bookkeeping [Clean Craftsman]. I really like this comparison. In
both cases, you have two independent truths (creditor and debtor,
or code and tests, respectively) that must produce the same result.
Once both propositions yield equal results, it is highly likely that
this outcome is correct. Especially if one of them is as simple as the
test code. It is unlikely that the same mistake was made in both the
code and tests when implementing them independently.

Having two absolute truths allows you to refactor one of them.
You still have the other truth to ensure that the final result is
correct. This allows you to refactor the code while leaving the
tests unchanged. Or you may change the tests while leaving the
code as is. The other, untouched component always serves as a
ground truth against which you can compare your changes. This
allows you to refactor your code without the fear of breaking it. If
your tests fail for an unknown reason, you can simply revert your
changes.

Here is a very small example of a function with a test.

1 def add(a, b):

2 return a + b

3

4 # inside test_add.py

5 def test_add():

6 assert add(1, 2) == 3

Now, if you want the function add to return a different result, you’ll
also have to change the test accordingly. Each change has to be
applied in both the code and the test.

18. Introduction to Testing 163

On the other hand you are also free to refactor the add function as
you please. As long as all tests still work, you are most likely fine.

Understand what you do

When writing tests, there are numerous factors to consider. The
example above was very simple. In actual code, you have to work
with much more complex objects. With many more arguments.
But all together, it comes down to one point: Do you really
understand what you want to test? If not, there is no need to
start writing a test. It would never work. It would be a waste of
time. Rewrite your code to simplify it or seek assistance to better
understand the problem you need to solve.

A Few Recommendations

Ensure that all the tests pass. Tests that do not pass are worth-
less. Even worse, they are a nuisance. When you run the tests,
failing tests can be confusing. They will confuse your coworkers.
Everyone will waste time trying to fix the failing test. There is
only one solution to prevent this: all tests have to pass all the time.
Therefore, ensure that your Continuous Integration (CI) enforces
that all tests pass. Tests that do not pass should be deleted.

In the setup phase, it is very common to have helper functions
that create all the necessary objects. These are standard Python
functions that generate the required objects. You might even have
a utility code file for all the tests. It contains some fairly static
objects like helper functions or class instances that you might need
in many different tests.

There are also some aspects to be mindful of during the execution
phase of the test. The first mistake that almost everyone made was
checking two floating-point numbers for equality. Due to rounding
errors, this will probably fail. There are specific approximate

18. Introduction to Testing 164

checks you should use instead. As the isclose function is used
in the example above.

Then it is common to miss some of the if-else branches. These
tests are crucial because most bugs tend to hide in conditional
statements. Ensure that you address all cases, if needed, by utilizing
a code coverage tool.

Similarly, you have to make sure your tests cover all the corner
cases. This is one of the reasons why tests should be written by
the same person who wrote the actual code as well. The developer
knows what the corner cases are, unlike some other testers.

When refactoring code, ensure that you onlymodify either the code
or the tests. This is the only way you can be sure that the changes
are correct. If code and tests have to be changed simultaneously,
the modifications should be straightforward.

Quality of Test Code

Tests are somewhat special, but ultimately, they are still code. In
a serious project, the test code is likely longer than the actual
production code you work with. When considering this, it becomes
apparent that when writing tests, certain coding guidelines must
also be adhered to.

When it comes to tests, it is even more crucial for the code to
be easy to understand compared to regular code. It can’t be too
easy. You are even allowed to repeat yourself, at least a little.
Or, as Jay Fields [Working Effectively with Unit Tests] put it:
“When writing tests, you should prefer DAMP (Descriptive And
Maintainable Procedures) to DRY.”

Still, you should value the SRP. The code in tests should be clear to
the reader. Refactor it as you would with any other code. Keep the
functions short, use appropriate names, and eliminate unnecessary
duplication. These aspects are often overlooked when writing tests.

18. Introduction to Testing 165

Even though the requirements for test code are somewhat different
from those for production code.

Number of test cases

Probably the most challenging decision is determining the values
you want to use in your tests. Writing one test case for a function is
much better than having none. But maybe you just got lucky, and
your code works exactly for this one number?

For a single-argument function, I recommend testing all possible
corner cases and approximately two random values. As you wrote
the function, you should know the corner cases: division by zero,
passing an empty array as a function argument, and ensuring that
the file used exists, etc. This is one of the reasons why a person
writing the code should also write the unit tests. Only this person
knows the corner cases. The acceptance tests, on the other hand,
should be written by an independent person. But we’ll come to that
later.

When dealing with functions that have many arguments, it can
become quite challenging to write tests. If you have 3 arguments
and you would like to test 3 values for each, you end up with 3^3

= 27 test cases. This is quite a lot. Now, you really have to ensure
that you understand what you are doing.

Here is an example of a function with three arguments. I have not
documented all the test cases, but you can imagine how tedious this
process might become.

18. Introduction to Testing 166

1 def f(a,b,c):

2 return a+b+c

3

4 # my_test.py

5 def test_f():

6 assert f(0,0,0) == 0

7 assert f(1,0,0) == 1

8 assert f(0,1,0) == 1

9 # ...

In some cases, the variables don’t interact with each other. They
are independent. You may test them independently. The number of
tests reduces to about 3 for each variable, resulting in 3*3 = 9 test
cases. This sounds much more reasonable, although it’s still quite
a lot.

Usually, the function arguments are not independent, or at least it
is not clear how they interact. Otherwise, they wouldn’t be in the
same function. And it’s generally not feasible to write 27 test cases;
that’s just too many. Just do your best instead. Test all corner cases
and include a few random ones. If the function consists of well-
written code that doesn’t appear to be intentionally hiding bugs,
you should be in good shape. And even more importantly, try to
keep the number and complexity of the function arguments low.

I’d like to reiterate the importance of truly understanding the
functionality of a function. As I have already mentioned several
times, you need to test the corner cases. And you can only identify
them if you know the code. Many corner cases are not easily
discovered by chance. Nor can you figure out whether some
variables are independent of each other or not. This is just one
of the reasons why you have to write tests right along with the
actual code. If someone else has to write the tests for your code,
they are missing this crucial information and either have to read
and understand all the code or just guess what it does. Both cases
are suboptimal.

18. Introduction to Testing 167

You may also have structured objects as input or output of a
function. This can become significantly worse than dealing with
three variables by orders of magnitude. Structured objects may
contain a multitude of fields, such as elements in a list. Everything
we have discussed so far becomes insignificant. But we can still
achieve a reasonable test coverage if we try. First of all, all elements
in a list have to be treated equally in your code. Avoid using a single
list to store different elements! This is a fundamental rule when
dealing with lists, see chapter [?]. It allows you to write tests for a
fairly short list and deal with only one element of it. Or at least by
selecting one element from a long list. All the other elements will
behave the same. The only corner case you’ll have to take care of
is the empty list.

But also in large structured objects, the complexity is usually man-
ageable. Most of the entries are typically quite independent and can
be tested accordingly. Most of the entries from a large structured
object are probably not even necessary within a function, as the
object is quite generic. If you have a nested struct as a function
argument, only pass the sub-structs that are actually used inside
the function. Only change the values that truly influence the object
under test. By following this approach, you can significantly reduce
the number of test cases.

Again, it all comes down to the programmer understanding the
relationship between different objects. Which parts of the object
are actually utilized within the function? Write a generic test with
default values for each component of the object. Then also write
tests for specific values of the object. Though again, here you’ll
have to figure out which values are important.

As you can see, most of the complexity in tests originates from
suboptimal code. If you write good code, the tests will be easy to
write. In good code, there are few arguments with minimal nested
structure, and all elements in a list are treated equally. Therefore,
the number of test cases is low, and setting up the required data
structures is comparatively easy.

18. Introduction to Testing 168

Stages of a Test

As we have seen, a test generally consists of three stages.

The first stage is the setup. It creates all the necessary objects
for the test. Usually, this consists of initializing all variables. For
functional tests, however, this may also involve copying or creating
files, or even databases.

The second stage involves executing the test. When testing, execute
the function you wish to test and verify that the outcomes align
with your expectations.

The third stage is the teardown. It cleans up all the files you created
during the setup and execution stages of the test.

Setup and Teardown

Writing the setup and execution stages of a test is usually fairly
easy. It’s just normal code inside a test function, so we won’t go
into too much detail about those. The most difficult part is the
teardown.

Setup and teardown are functions that are automatically called at
the beginning and end of a test, respectively. This is ensured by the
testing framework. Though most of the time they are not needed.
The setup can also be replaced by a few helper functions. There
is absolutely nothing wrong with that. At the end of the test, the
interpreter or compiler cleans up all the variables as they go out of
scope.

In most cases, especially in unit tests, there is no need for a
dedicated teardown function. At the end of its execution, a unit
test should clean up everything it does. However, if you write ac-
ceptance tests that use text files, databases, or something else that is
persistent, things become tricky. Your tests may require temporary
files, modifications to database values, network connections, etc. It

18. Introduction to Testing 169

becomes messy. You need a foolproof way to ensure that your file
handling always works the same way, regardless of the outcome of
a test. Even if it throws an uncaught exception. This is where setup
and teardown really come into play.

For file creation, there is not much that can go wrong. You can
create it from code or copy it from another location. This is to
be implemented in the setup part of the test or using a specific
function. When copying files or databases, ensure that the original
file is write-protected. Otherwise, youmight change it accidentally.

The tricky part is deleting the files at the end of the test. And yes, it
has to be at the end of the current test rather than the beginning of
the next test. Since you will likely rearrange the order of the tests
at some point, cleaning up at the beginning of the test would not
work anymore. Cleaning up at the beginning of a test is a fairly
desperate measure and an obvious sign that something is seriously
flawed with your test design. Every test should be able to assume
that the everything is cleaned up before it starts.

It may sound very simple to delete a file at the end of the test,
but if the test fails, for example, due to an uncaught exception, it
aborts. All the code that follows in the normal control flow will
be skipped. A typical function call to delete the file will never be
executed. There would be a mess of undeleted files. This might
impact future runs of the tests, causing them to become flaky
(sometimes they pass, sometimes they don’t). Flaky tests are one
of the worst scenarios because they confuse everyone.

This problem can be solved by implementing the teardown func-
tion, which is guaranteed to be always executed, regardless of the
test result. This is where the dedicated teardown function comes
into play. It is guaranteed to be executed, even if there is an error
occurring inside the test. Only in very serious cases, such as a
segmentation fault, the teardown may not be executed. Though
this is only a problem with low-level languages such as C++.

Anyway, try to write tests that do not require files or input/output

18. Introduction to Testing 170

operations. It makes things much easier. Especially with unit tests,
you won’t have to deal with setup and teardown functions.

Here is an example of a test with the special setup and teardown
functions. [https://code-maven.com/slides/Python/pytest-class]

1 class TestClass():

2 def setup_class(self):

3 print("setup_class called once for the class")

4

5 def setup_method(self):

6 print(" setup_method called for every method")

7

8 def teardown_method(self):

9 print(" teardown_method called for every method")

10

11 def teardown_class(self):

12 print("teardown_class called once for the class")

13

14 def test_one(self):

15 print(" before")

16 assert False

17 print(" after")

The captured output is this:

1 ------------------------------------- Captured stdout set\

2 up ------------------------------------

3 setup_class called once for the class

4 setup_method called for every method

5 ------------------------------------- Captured stdout cal\

6 l -------------------------------------

7 before

8 ------------------------------------- Captured stdout tea\

9 rdown ---------------------------------

18. Introduction to Testing 171

10 teardown_method called for every method

11 teardown_class called once for the class

It is showing that the teardown functions are called even if the test
fails, while a normal function like this print(" after") statement
is not executed.

Whether you should use the method or the class function depends
on your tests.

Helper functions

A test is also a programming object. Accordingly, it has to follow
the basic rules, for example, the SRP. Though you don’t have to
follow the SRP as strictly as in regular code. As written above, in
tests DAMP is more important than DRY.

Each test serves a singular purpose. It tests exactly one function
or method. Testing multiple functions within a single test is
considered bad practice. Write helper functions to set up a test,
making it easier to add more test cases. You may even use a little
bit of copy-paste code in tests if it makes the code more readable!
Having many smaller tests forces you to structure them better and
improves the overall overview.

Let’s provide an example of how helper functions can make a test
case easier to read.

18. Introduction to Testing 172

1 def test_car_accelerates_if_gas_pedal_is_pushed():

2 engine = Engine()

3 wheels = [Wheel() for _ in range(4)]

4 board_electronics = Samsung_TV()

5 initial_speed = 0

6 car = Car(engine, wheels, board_electronics, initial_\

7 speed)

8

9 car.push_gas_pedal()

10

11 assert car.speed == 1

This test has the problem that the setup takes much more than just
one line. Thus we should create a helper function that takes care of
the creation of the car.

1 def create_standing_car():

2 engine = Engine()

3 wheels = [Wheel() for _ in range(4)]

4 board_electronics = Samsung_TV()

5 initial_speed = 0

6 return Car(engine, wheels, board_electronics, initial\

7 _speed)

8

9 def test_car_accelerates_if_gas_pedal_is_pushed():

10 car = create_standing_car()

11 car.push_gas_pedal()

12 assert car.speed == 1

Now the test case looks much better. There is only one line for the
setup, one line for the action we want to test, and one line for the
assertion. Of course, we could also create the car object in a single
line, but that is not the point here. The point is that the test case is
much easier to read and understand.

18. Introduction to Testing 173

The helper function can probably also be used in other test cases,
reducing the total amount of code needed and possibly eliminating
some duplication. One open question is where the line car.push_-
gas_pedal() belongs to. Here I prefer to have a 4th stage: setup,
execution, checks, teardown. I like this explicitnes and don’t see
how this execution stage could be part of the setup or the checks. In
my opinion it does something quite different and therefore deserves
its own stage.

One final note regarding this test: If you are not accustomed to
writing unit tests, you may find the test name to be quite lengthy.
But this is not a problem. The test name is only used in the test
report. It is not used anywhere else. Thus, it doesn’t hurt to have a
long test name. It is actually good practice to have a long test name
as it enhances the readability of the test report. If you read a test
report you should be able to pinpoint the error by reading the name
of the test. A test name of 50 characters is completely normal.

Number of Assertions

There are some purists who argue that a test should contain only
one assertion. I’m not sharing this opinion, even if they have a
point. I believe there are cases where it is beneficial to include
more than one assertion in a single test case. Otherwise, the tests
become too verbose, in my opinion.

Problematic Tests

Just as with regular code, there are certain indicators that a test may
be problematic.

18. Introduction to Testing 174

Dependent Tests

It is common to encounter situations where a test can only pass if
another test passes as well. They are coupled. For example, you
have a function that creates a file and writes a number to it. You
should write an acceptance test that calls this function and checks
for the existence of the file (this is not a unit test, it may fail if there
is not enough disk space).

Next, you write a test that reads the contents of this file. In this
test, you will first call the function to create the file and then call
the function to read it. Now there is a problem: These two tests are
related. If the code fails to create a file, it will not be possible to
read it. If the first test fails, the second test inevitably fails as well.
This type of dependency represents poor design and violates the
SRP. For one failing feature, only one test should fail. This makes
it much clearer where the error originates. Having 50 failing tests
at once can be extremely frustrating because it is not immediately
clear why the tests are failing. Is it for a single reason or do they
all fail for different reasons?

Unfortunately, having all the tests completely separated is a very
difficult, if not an impossible task. There is always some correlation
between the results of tests. But there is a technical solution that
helps to some extent. In Python, you can skip tests if a requirement
for the test is not met. Tests can depend on each other using the
@pytest.mark.dependency attribute. This allows us to skip tests that
would fail because another test has already failed.

1 pip install pytest-dependency

18. Introduction to Testing 175

1 import pytest

2

3 @pytest.mark.dependency()

4 def test_a():

5 assert False

6

7 # skip test_b if test_a fails

8 @pytest.mark.dependency(depends=["test_a"])

9 def test_b():

10 print("This will never be printed.")

11 assert False

As in this example, test_a is always going to fail, so test_b will be
skipped as it depends on test_a.

The output will be 1 failed, 1 skipped. Only test_awas executed
(and failed) while test_b was skipped. Once test_a is fixed, will
test_b be executed as well.

For unit tests, dependent tests are generally not an issue. Each test
covers only one unit, which shouldn’t depend on any other units.
Thus, unit tests are independent. For integration or functional tests
[chapter Types of Tests], this is a different story. They can easily
become dependent on one another. This is why it is important to
keep track of the dependencies of the different tests.

Flaky Tests

Tests that do not always return the same result are called flaky.
This is extremely bad. It’s just like a false alarm once in a while.
You may become annoyed and start ignoring it. Or maybe even
worse, the alarm doesn’t go off even though it should. Try to avoid
flaky tests at all costs. It won’t take much effort to rerun the tests.
But the main problem is that it undermines the team’s confidence
in the test suite. You will never know if a test is failing due to your
changes in the code or because, for example, the network is down.

18. Introduction to Testing 176

At times, rerunning a test might help, but this is only a superficial
fix.

The only real solution is writing fail-safe tests. Write, for example,
a test that checks the network connection. All tests that rely on the
network connection will be dependent on this test. Structuring the
tests in this way can significantly reduce flakiness. It is crucial to
design your tests in a way that prevents flakiness.

Especially unit tests should never be flaky. A test only becomes
flaky if some part of the code under test is flaky but this should
never be the case for unit tests. Unit tests should not depend on
things that can fail, such as the file system or network connections.
This is one of the reasons why you should avoid testing input/out-
put (IO) for unit tests and minimize it as much as possible for all
other tests.

The following test is unreliable and consistently fails late at night:

1 from datetime import datetime

2

3 def test_time():

4 assert datetime.now().hour < 23

Of course, this is a pretty dumb example, but it’s less exotic than
you may think. Tests (and code) have probably already failed for
similar reasons. People find plenty of reasons to write such kind of
code.

Brittle Tests

Tests that are overly specified are called brittle. They break when
changing the code in seemingly unrelated places. One example is
testing a JSON file for formatting, even though the contents of the
JSON file [chapter data files] does not depend on the formatting.
The formatting does not matter. It does not change any of the

18. Introduction to Testing 177

values in the file. Testing the formatting is just a waste. Even
worse, it is an unnecessary liability because it tests something that
should not be tested. Something that the result does not depend
on. Instead, utilize a JSON library to extract only the real values
stored in the file and then compare them. This is what we are really
interested in. Avoid using string operations when reading a JSON
file. JSON should never be read as a string and parsed by your
custom library. This is the very definition of brittle code!

1 import json

2

3 def test_json_stable():

4 x = '{"a": 1, "b": 2}'

5 y = json.loads(x)

6 assert y == {'a': 1, 'b': 2}

7

8 def test_json_brittle():

9 x = '{"a": 1, "b": 2}'

10 y = {x[2]: int(x[6]), x[10]: int(x[14])}

11 assert y == {'a': 1, 'b': 2}

Another example of brittle tests is testing methods that should be
private but are made public in order to test them. This prevents you
from refactoring this function because it is now part of the public
interface. Changing it will break the tests, even if the actual public
interface remains unchanged. This is why private methods should
not be made public for testing purposes. If you truly feel the need to
test a private method, you should refactor it into a separate class.
You should always just test interfaces, they are more stable than
implementations.

Random Numbers

If you ever use random numbers in your code, you might get
stuck with your tests. You think. How can you test something

18. Introduction to Testing 178

that is random? Well, you can. Random numbers generated are
typically not truly random. Your computer generates them. It
uses an algorithm to generate numbers that appear random, but
it still produces numbers in a deterministic sequence. Always
use the same random number algorithm and seed (initial value)
consistently to ensure reproducible results for each test case. Only
use truly random numbers once you have deployed your software.

The Beyoncé Rule

A common question is “What to test?”. A very simple answer is:
everything. This is certainly a correct answer, although you cannot
always test everything equally extensively. You will simply lack
the capacity for that. Instead, at Google, they came up with the
Beyoncé Rule. [Software Engineering at Google] She sings in her
song, “If you like it, then you should have put a ring test on it.”
Apparently, this applies to most of your code. You do like your
code, don’t you?

Exceptions and Tests

One thing people people frequently forget to test are exceptions.
And you should not only test the type of the exception, but also the
exception message. Both, the exception type and the message, are
important. That’s why they exist.

Test-DrivenDevelopment (TDD)may help to avoid this issue. With
TDD you first write the test and you’ll realize right away that
the your tests already pass. Which is an indication that there is
something wrong with your tests.

18. Introduction to Testing 179

Not Automatable Tests

As software engineers, we aim to automate everything, including
tests. However, this is not always possible. There are still things
that we can hardly automate. One example is image processing
algorithms. How much can an image be compressed while still
maintaining good quality? This is very difficult to determine with
an automated test and is better assessed by humans. When running
complex simulations, such as analyzing the aerodynamics of an
airplane, it is impossible to create a test to verify the accuracy of
the simulation results. Simply because you don’t know the correct
result. You can only judge if the result makes sense based on your
experience. There are still things that are better tested by humans
than computers.

19. Types of Tests
There are different types of tests, depending on their scope. There
are several different categories of tests. Though, for the sake of
simplicity, I’d like to reduce it to only 3 different types. Please note
that the distinction between the different types of tests is not always
clear. There are some tests that are a combination of two different
types. But, in general, the following three categories are sufficient.

1. Unit tests assess the behavior of individual functions, classes,
and modules.

2. Functional tests assess the behavior of the entire software sys-
tem. // rename acceptance tests to functional tests globally?

As we will see, each of these categories has its own right to exist as
they each cover different parts of the code. They are all important
and should be used in combination. There are also other types
of tests that we will delve into later, while others we will simply
ignore. Also, the naming of the different types of tests is not
standardized. There are different names for the same type of test.
For example, functional tests are also referred to as end-to-end
(E2E) or acceptance tests.

The small unit tests are the foundation of the testing infrastructure.
They can be executed quickly. Meanwhile, as tests become more
complex, they may take longer to execute as they are designed
to assess the interaction of components rather than individual
components themselves. Thus, larger tests are more likely to find
bugs, but at the same time, they are not suitable for pinpointing
them.

Functional tests can also be written in a different programming
language and by a different person than the underlying code. They

19. Types of Tests 181

depend, for example, on the API that might be written in a different
language. I wrote functional tests for some C++ software in Python
because it was easier to process the resulting text files.

Unit Tests

First, we have to figure out why unit tests are actually needed.

Many programmers follow this workflow: they write a function
and then need to determine if it works correctly. To achieve this,
they utilize print statements or the debugger. They run the code and
check if the results are correct. Let’s look at the following example.

1 def square(x):

2 return x**2

3

4 print(square(1))

5 print(square(2))

6 print(square(5))

This works. People worked like this for decades. But it’s absolutely
terrible. The print statements will be deleted once the code works.
The checks will be discarded, and no one knows anymore what
the code is actually supposed to do. Whether it still works. When
modifying the function, you have to test it again. Everything.
Every time. By hand! This is a typical example of a procedural
DRY violation that should be optimized. The solution is unit tests.

Unit tests cover relatively small sections of code. Usually, they test
a public method or a standalone function. In the example above,
the unit tests would verify everything that is typically verified using
print statements. The unit tests for the square function would look
something like this:

19. Types of Tests 182

1 def test_square():

2 assert square(1) == 1

3 assert square(2) == 4

4 assert square(5) == 25

This code snippet essentially performs the same function as the
print statements mentioned earlier. But with a very important
difference, this test code will remain. It goes into the test suite
and will remain there indefinitely. Or at least as long as you
still have the square function defined. This test will be executed
every time you run all the unit tests. You’ll know if the code still
works, even after changing the underlying implementation. The
only drawback is that it takes a millisecond for each test to execute,
and these numbers may add up as you keep writing unit tests.
Additionally, you will have to modify the test code if you change
the implementation. But the last point is actually a good thing. It
prevents you from inadvertently changing the behavior of the code.
You have to assert that you want the behavior to change. If you
change the actual code, you also have to update the corresponding
unit tests.

It may sound surprising, but unit tests are the cornerstone of
the testing infrastructure. They are even more important than
functional tests. This is because unit tests are fast and can provide
precise information about which part of your code contains a bug.
In contrast, functional tests can only indicate that something is
wrong within the entire code base and they require a significant
amount of time to execute. Therefore, having your entire code
covered with unit tests will have a similar impact as having it cov-
ered with functional tests. However, unit tests have the advantage
that you will know precisely where an error occurred, and they are
much faster to execute.

The drawback is that unit tests do not verify whether these building
blocks are connected correctly. Unit tests cannot assess the inter-
action between different code blocks.

19. Types of Tests 183

Testing Files in Unit Tests

Usually, unit tests only require a setup and an execution phase.
There is no tear-down function required for unit tests since they
do not interact with any files or databases that need to be deleted
afterward.

“Why…? How? No files? No database?”

Yes, that’s a good point. According to the SRP, a function or class
should only perform one task. Therefore, it should not read a
text file and perform complicated calculations. Reading a text file
should be done in a dedicated function. This function will not have
a unit test. But it is not necessary to test automatically because
reading a file and returning it as a string is not a difficult task. The
code will be covered by functional testing.

Let’s say we have the following code.

1 def share_values(filename):

2 with open(filename,'r') as f:

3 file_content = f.read()

4 share_values = parse_share_values(file_content)

5 # ... and much more code

6 return share_values

The section of this code that reads the file is very simple. It is
not necessary to test it. Instead, it can be easily extracted into a
separate function. This method is referred to as the “WrapMethod”
by Michael Feathers [WELC, p.70]

19. Types of Tests 184

1 def get_share_values(file_content):

2 share_values = parse_share_values(file_content)

3 # ... and much more code

4 return share_values

5

6 def read_file(filename):

7 with open(filename,'r') as f:

8 return f.read()

9

10 def share_values(filename):

11 file_content = read_file(filename)

12 return get_share_values(file_content)

Here, we wrapped the code for reading the file into a separate
function. The rest of the code is written within a dedicated
function. For this function, one can easily write a unit test because
it does not depend on the file system. A test might look as follows:

1 def test_get_share_values():

2 file_content = "Apple, 150.3"

3 assert get_share_values(file_content) == {"Apple": 15\

4 0.3}

This is similar to the GUI layer for functional tests. You pack
everything you don’t want to test into a thin layer that is unlikely
to fail, making the remaining test much smoother. In this case,
this small layer is the function read_share_values, which reads the
file into a string. Uncle Bob refers to this as a “Humble Object”
[Clean Craftsman p.157]. It is a thin layer that is unlikely to fail
and therefore does not need testing. It is simply a thin wrapper
around the function that reads the file.

The same holds true for database access or retrieving the current
time value. You write a small wrapper function that does nothing
but calls the database or returns the current time. Separate the

19. Types of Tests 185

remaining code into a distinct function that can be tested indepen-
dently.

An even better solution is to implement Dependency Injection (DI)
[https://martinfowler.com/articles/injection.html] as explained in
the next chapter. But for the moment, we’ll leave it with the small
wrapper function.

Testing classes

Writing unit tests for classes is arguably the most crucial aspect of
this chapter. This is not only due to the prevalence of classes but
also because classes tend to become messy without any unit tests.

First of all, classes tend to become too large. They have too many
member variables and complicatedmethods. Bothwill make it very
hard to write unit tests. Member variables share the same issues as
function arguments do [Classes]. Member variables increase the
dimensionality of the problem being tested. This leads to many
more possible test cases than should be required for good class
design, as discussed in chapter [Testing].

Furthermore, there is the issue of how to handle private methods
in large classes. Apparently, the testing framework does not have
access to private methods. No one has, except for the class itself and
perhaps some friends’ classes. One initial approach is to change the
private methods to public. This, however, is not recommended. It is
not advisable to make methods public solely for testing purposes.
This will result in convoluted code with an excessive number of
public methods, which is the complete opposite of encapsulation.
For the same reason, you should resist the temptation of making
the test a friend class of the class under test. Therefore, unit tests
(and certainly all other tests) should only test the public interface
of a class. It should test the class as a whole. If you are tempted
to test private methods, you should resist. This is a clear sign that
your privatemethods are too complex. Consider creating a separate

19. Types of Tests 186

class for these private methods with a public interface that can be
tested.

Classes that are difficult to instantiate pose another problem. For
example, if an object is difficult to construct, or if the constructor
has side effects that are not guaranteed to be undone by the
destructor. Such as opening a file, incrementing a counter, etc. In
the actual code, it can be ensured that all necessary conditions are
met so that you never encounter any issues. For instance, if you are
instantiating a class only once. When running unit tests, however,
these guarantees may be broken in some cases, leading to undesired
behavior. For these reasons, the constructors should be small and
not execute any fancy operations.

In summary, the following points can be made about classes and
tests:

• Classes should be small and contain few member variables
• If youwant to test privatemethods, consider refactoring them
into separate classes.

• The constructors should be simple and not have any side
effects

All these rules are implied by the topics we have covered so far. But
now we have a reason why we absolutely have to obey them. The
unit tests compel us to do so.

Here is an example of how to refactor a complex private method
into a dedicated class.

19. Types of Tests 187

1 class Car:

2 def __init__(self, engine):

3 self.engine = engine

4 self.speed = 0

5

6 def push_gas_pedal(self):

7 self.speed += 10

8 self._increase_rpm()

9

10 def _increase_rpm(self):

11 self.engine.rpm += 1000

Apparently this code is bad because increase_rpm should be part
of the engine. I made this code deliberately this bad in order to fix
it now. Let’s assume we want to test the _increase_rpm method.
We can refactor it into a separate class.

1 class Engine:

2 def __init__(self):

3 self.rpm = 0

4

5 def increase_rpm(self):

6 self.rpm += 1000

7

8 class Car:

9 def __init__(self, engine):

10 self.engine = engine

11 self.speed = 0

12

13 def push_gas_pedal(self):

14 self.speed += 10

15 self.engine.increase_rpm()

Now the code is much better. By moving the method increase_-

rpm into the Engine class and making it public, we can now test it.

19. Types of Tests 188

Furthermore, this method belongs to the Engine class, not the Car

class.

Copilot

Copilot can be significantly helpful when writing tests. I have writ-
ten a function to convert numerical values into Roman numerals
and have created a unit test file. Copilot started implementing the
unit tests without any additional instructions.

1 from refactoring import roman_number

2

3 def test_roman_number():

4 assert roman_number(1) == 'I'

5 assert roman_number(2) == 'II'

6 assert roman_number(3) == 'III'

7 # ... and tests up to number 42

However there are two minor things that I’d like to have improved.
First of all there should be preferably only very few asserts per test.
Here we have 42 of them.

Second, the test is testing things that were not even implemented
in the code. The roman number function was only implemented
for values up to a value of 3. So it seems as if Copilot somehow
guessed what kind of tests were needed but did not check what is
actually implemented.

The code above can be refactored, for example using a dict,

1 # refactor this code to use a dictionary

2 dictionary = {1: 'I', 2: 'II', 3: 'III', 4: 'IV', 5: \

3 'V'}

4 for key in dictionary.keys():

5 assert roman_number(key) == dictionary[key]

19. Types of Tests 189

Even if I desired this change, upon reviewing the code, it is not
entirely clear whether this is an enhancement over the original
code. We have removed some redundancy and now only use
one assertion. On the other hand, the redundancy was not that
significant, and the old code was very easy to understand, which
may be even more important than removing the repetitive code.
This decision requires human judgment, and I am still unsurewhich
solution is better.

Functional Tests

Functional tests perform tasks that align with most people’s intu-
itive expectations of a test. Somemarketing personnel, for example,
the Product Manager (PM), orders a new feature. He tells you,
more or less exactly, what this feature should do and provides you
with some examples. The feature is considered complete once these
examples can be executed using your software. As you don’t want
to end up in the same situation as in the story in the previous
chapter [Testing] with the desperate manager, you write automated
tests that cover the examples. This is a fairly good guarantee that
the feature is still working, even if someone were changing the
underlying code. So, there is one thing you will always do: write a
functional test for every new ticket.

If you publish code examples as part of your API documentation,
you should write a functional test for every single one of them.
There’s nothing more embarrassing than including failed examples
in your documentation.

Functional tests are user-centered. The user lacks knowledge about
the internal workings of the code. He doesn’t want to know
anything about the internals of the code. He only has the interfaces
you provide: GUI, API, keyboard, webcam, etc. This is all he cares
about. He wants to watch a YouTube video. He wants high image
quality and fast response time. He doesn’t care what kind of fancy

19. Types of Tests 190

algorithms the thousands of Google employees developed to control
all the server farms.

Sounds good. But at the same time, it seems extremely difficult
to write these tests. Testing a GUI or webcam input seems quite
challenging.

True. But when making a few simplifications, the effort becomes
quite reasonable. Most importantly, you need to have well-
structured code. As shown in Figure [levels of abstraction…?] the
GUI is an abstraction level higher than the API. Don’t mix the two!
TheGUI code consists of HTML andCSS code, images, buttons, and
graphs. These things are difficult to test automatically, but they do
not contain any logic that is likely to have bugs. As mentioned
before, this is called a Humble Object. This layer is difficult to test
but unlikely to fail. Every mouse click corresponds to a function
call to the underlying API. If the GUI looks fine, it is most likely
functioning correctly. It is a thin layer that does not contain any
logic and is unable to hide bugs.

Of course, if you neglect the GUI layer, the tests are not real func-
tional tests anymore. Maybe one should rename them. However, I
continue referring to them as functional tests since the API remains
a public interface to your software.

Writing tests at the GUI level is quite challenging. Though there
are tools, such as Selenium [https://www.selenium.dev/], that au-
tomate clicks on the GUI and translate them into API calls. It is
generally recommended to keep the number of GUI test cases as low
as possible. However, there are simply too many programs that are
not structured as recommended in this book. They cannot be tested
otherwise because they don’t have an API that is well separated
from the GUI. Meanwhile, there is considerable demand for testing
these programs nonetheless. Needless to say, using these testing
tools adds significant overhead to the testing efforts required.

Testing on the API level is comparatively easy. You can translate
each button click from the GUI examples directly into API function

19. Types of Tests 191

calls. Write a test that makes the API calls, checks the results, and
you’re done. However, there is one problem with functional tests.
In practice, you have to deal with potentially large files, databases,
and slow network connections. This may significantly slow down
your tests. Additionally, the files or databases must first be created.
This task can be accomplished either by using a script or by copying
them from another location.

The output of the tests may potentially result in large files as
well. Comparing the results of these large files may not be very
helpful. One tiny difference in these large files won’t provide much
insight into what is malfunctioning. One option for improving
performance is to compare hash values instead of complete files.
It won’t provide more information than indicating that the files are
different, but at least it is much faster to compute. And remember:
functional tests are not there to pinpoint the source of a bug. They
are just an indication that something might be wrong.

One solution is to use small files. This makes the tests run faster.
However, having only tests with relatively small data sets and files
is not representative of the everyday usage of your software. You
absolutely have to run performance tests with realistic data sets
as well. Otherwise, you might run into all kinds of performance
problems at the release.

Functional tests are often highly correlated. A single bug in
your infrastructure code can cause many tests to fail. There-
fore, it is important to mark functional tests in python with
@pytest.mark.dependency() as explained in the section on [Depen-
dent tests]. You should always combine functional tests with unit
tests to pinpoint the source of the bug.

19. Types of Tests 192

Other Kinds of Tests

Unit and functional tests are not the only kinds of tests. As we have
seen, there are, among others, also integration and performance
tests. Here we’d like to briefly have a look at what other kinds of
tests there are.

Integration Tests

As already mentioned above, integration tests are a mixture of unit
and functional tests. They test entire components of the software,
such as a module. As you want to isolate this module, you have
to mock all the other modules that it depends on. This may be
a considerable amount of work, as you have to write mocks for
every other module. You can pass these mocks using dependency
injection (DI) or run for example a mock dataserver which is very
much simplified.

This effort may be worth it as integration tests are much faster to
run than functional tests. Therefore you can run them more often
and they are a better help to pinpoint bugs.

Performance Tests

Performance tests are one type of test class that is frequently over-
looked. Functional tests are often developed for small databases
to minimize execution time. But this leads to the problem that
executing the code with normal-sized databases is not tested, and
chances are that this would be unacceptably slow. For this reason,
it is important to write performance tests that run with realistic
parameters to prevent a poor user experience caused by slow
response times.

There are many different types of performance tests. The most
common type of testing is load testing, where, for example, the

19. Types of Tests 193

number of users is increased until the system breaks down, or one
measures the response time of the system. It is the goal of these
tests to determine the system’s limits.

Explorative Tests

Explorative tests are designed to uncover bugs that the developer
may not have considered. They are typically carried out by the
testing or quality assurance team. They are not automated and
are not part of the test suite. They are executed, and if a bug is
found, it is reported to the developer. Otherwise, it is just ignored.
Explorative tests are not a substitute for unit or functional tests.
They are just an additional tool to find bugs.

Conducting exploratory tests requires some experience in antic-
ipating potential issues. What corner cases might have been
overlooked by the programmers?

When to run Tests

It is very important that all tests, excluding exploratory tests, are
run automatically. This is the only way to ensure that they are
always run. When they are run exactly, however, depends on the
kind of test.

Unit tests are fast. Each one of them takes only a few milliseconds
to run. All together, they shouldn’t take more than a few seconds.
Split the unit tests up in subgroups if your program becomes too
large and it takes more than a few seconds to run all of it. It is
important that unit tests are fast because they are run frequently.
You should run them every few lines of code that you write.

Code is only allowed to be merged into the master branch if all unit
tests pass. This means that every programmer has to run the unit
tests before creating a merge request (MR) [devops] in the same

19. Types of Tests 194

way as ensuring that the whole project compiles. It is mandatory
to fix the code that broke the unit tests; otherwise, it will not be
merged.

Now let me reiterate: It is mandatory that all unit tests pass before
an MR can be merged into the master branch. This is a rule
that should be automated. Set up the Continuous Integration (CI)
[devops] accordingly. It should check the unit tests just the same
as it checks the formatting and the compilation of the code. This
is just another mandatory requirement within the MR, in addition
to ensuring that the code compiles. This is the only way to ensure
that the unit tests always pass.

When it comes to functional or performance tests, things get a little
trickier. They are slow and cannot be run before everyMR. It would
slow down the entire development process too much. Therefore,
you can’t guarantee that all functional and performance tests will
be run all the time. Instead, you have to set up the CI to run them
overnight (“nightly build”). If a test fails, it should send an email to
all the developers whomade changes on the previous day. The team
must then gather and determine the reasons behind this situation.
Usually, it is fairly obvious why the tests failed, and it won’t take
much time to figure out who broke the test and how. But it is
important that the problem is resolved as soon as possible.

Integration tests are once again a mixture between the two. They
are usually too slow to be run after every code change. But they
don’t have to be. They are only checking complete modules and not
every code change alters its behavior. Integration tests should take
only a fewminutes, compared to potentially hours of the functional
tests. This allows them to be run in every MR.

19. Types of Tests 195

Who should write Tests?

With unit tests, it is evident that the responsible developer must
write the tests. He knows the code best and understands what it
is supposed to do. Unless you work in the automotive, medical, or
aerospace industry, where the tests are written by a dedicated tester
due to high regulations.

When it comes to functional and performance tests, the situation
is not that clear. Should the tests be written by someone from the
development team, the marketing side, or an independent tester?
As always in software engineering, such questions have no easy
answer. There are trade-offs to consider when choosing between
different solutions.

Having developers write the tests has the advantage that they
know the code. They know the difficulties. They can address
these challenges by creating specific tests. A developer might also
understandwhat the customers want andwhere the common issues
lie. This also helps to target the most critical areas of the code.

On the other hand, having an independent tester also has some
advantages. He doesn’t know about the weaknesses of the code.
Instead, he writes more explorative tests. These tests might uncover
bugs that developers did not anticipate, as they are in areas of
the code where bugs were not expected. Additionally, developers
are usually overconfident about the quality of their code. They
think the code is better than it actually is. This is why it is
beneficial to have an independent tester who is not influenced by
the code. Furthermore, independent testers are typically closer to
the customer and create tests that closely resemble the actual use
case.

Tests should be written as early as possible. This principle applies
not only to unit tests but also to functional tests. Writing tests
at the end of a project has the drawback that possible issues
will be very hard to resolve because the entire software is nearly

19. Types of Tests 196

finished, making changes very difficult and potentially expensive.
As a general rule of thumb, the cost of fixing a bug increases
exponentially over time.

// get an image without copy right

The Testing Pyramid

We have said that we should write mostly unit and functional tests,
maybe also integration tests. Additionally we have performance
tests and exlorative tests. As a rule of thumb, one can say that the
testing suite of any program should consist of many fast, small-
grained tests and comparably few slow, coarse tests.

Unit tests are the foundation of the testing pyramid. They are
generally the most useful as they check each part individually and
can provide detailed feedback if something is broken. They are like
testing the individual parts of a car radio before assembling it. Unit
tests prevent the use of faulty components. Roughly, an estimated
80% of all tests should be unit tests. [software engineering at
google].

// get an image without copy right

Integration tests are the second level of the testing pyramid. They
are like testing the assembled radio on a test stand. Integration tests
are coarser than unit tests and cannot pinpoint errors as precisely.
But they are still useful for checking the functionality of the radio.
About 15% of all tests are integration tests.

Functional tests should only verify that the installation of the radio
in the car was successful as expected. Turning it on once should
be completely sufficient as there is not much more that can still go
wrong.

Functional tests are the least common. They are very valuable for
verifying that a program actually works. There are always some

19. Types of Tests 197

things that can go wrong, even if all unit tests pass. However, the
feedback you receive from a functional test is very limited. It will
mostly indicate that something is wrong, but you will spend a lot of
time debugging the cause of this issue. On the other hand, you don’t
need too many functional tests. If you have good test coverage
with your unit and integration tests, the likelihood of experiencing
numerous failing functional tests is low.

Once you confirm that the engine, gearbox, and brakes of a car are
functioning properly and working in harmony, there is not much
more to test on the fully assembled car. If it runs, it’s probably fine.
Only about 5% of all tests are functional tests.

20. Writing Better Code
with Tests

“Quality is a product of a conflict between programmers and
testers.” ― Yegor Bugayenk

[https://www.testim.io/blog/test-automation-benefits/]

Tests are not only important for writing correct code. They are
equally important for enhancing the code you write. At least if
you embrace them and you are not just writing tests for the sake of
it.

Unit Tests

Unit tests ensure the correctness of your code at a small-scale level.
Thanks to unit tests, you no longer have to manually verify if the
results of a function or class are correct. The unit tests check it
automatically. But this is only half the reason why they are so
important. The other half might be a little bit unexpected for you:
unit tests compel you to write better code. When writing unit
tests, you realize immediately whether your code is good or bad. If
writing a unit test is difficult, writing normal code will be difficult
as well. It indicates that there are some design issues in your code,
and you should consider redesigning it.

During the setup phase of the test, you have to create all the
required objects. If this task becomes more tedious than expected,
your data may be scattered in inappropriate locations. This is a
strong indication that the design of your code is poor and needs
to be reworked. When writing a test, you are a user of your own

20. Writing Better Code with Tests 199

code. And your code should be user-friendly, as we have learned
in the chapter on interfaces. Thus, if your code is difficult to use, it
is considered poor quality.

In good code, all the relevant data is easily accessible, and con-
structing it manually for a test case is fairly simple. Preferably,
you should have one large object with relatively static information
that you can reuse in all tests, along with a few small, dynamic
objects that vary in each test.

If you write a test, you have to know the expected outcome of the
function call. If you struggle with the simplest cases, chances are
high that your functions are too complex. They should be simpli-
fied. Rewrite the code until you can explain to your colleagues
the functionality of the code. Until you can write a test case.
Otherwise, you’ll run into significant problems along a bumpy
road.

You will be running the unit tests continuously. After every
function you define, after every successful compilation, after every
coffee you drink, and certainly every time you pull code from the
repository. It provides constant feedback on whether everything
is functioning properly or if something has been broken. This is
invaluable. The only price you pay is the execution time of the
unit tests. Keep them small and fast. A single unit test should not
take more than a few milliseconds. You will be running hundreds,
if not thousands, of tests all the time, so execution time is crucial.

Finally, I would like to emphasize once again the importance of
this chapter. Learn how to write effective unit tests. Read this
chapter again or, even better, search for more elaborated examples.
There are thousands out there. And most importantly, once again,
write tests yourself and discuss the design questions with your
colleagues. This is how you will really make progress.

20. Writing Better Code with Tests 200

Integration and Functional Tests

At first, it sounds great to write integration or even functional tests.
With relatively few tests, you can cover a significant portion of the
codebase. But this comes at a price.

Integration tests cover much more code than the sum of many unit
tests. This has the advantage that a single test is muchmore likely to
find a bug. But it also has its drawbacks. Integration or functional
tests cover a large amount of code, which makes them slower and
less precise when it comes to pinpointing an error. Fixing bugs
identified through integration or functional tests is much more
challenging than addressing bugs discovered through unit tests. At
the same time, integration tests are also more brittle than unit tests.
The interfaces are much larger, and there is a substantial amount
of code underneath that can be altered. And ultimately, these tests
are expensive to run. They are huge and they are slow.

Despite these drawbacks, integration and functional tests have their
own right to exist. They help improve your code and also encourage
you to write proper interfaces. It is important to write these tests
from the beginning of a project to ensure that your components
and the API are easy to use and to locate potential bugs early.
Functional tests, for example, are important to demonstrate that
the user stories are truly functional. To prove that the software
really works. Or to write a test case if a bug is found.

Testing Existing Code

When working with code, you will end up writing tests for existing
code. I know, in theory, this shouldn’t happen, yet reality and
theory do not always agree. Writing tests for existing code is
much harder than writing tests along with new code. It can be
challenging to identify the weaknesses and the underlying logic in

20. Writing Better Code with Tests 201

existing code. Usually, there are corner cases that are really hard to
find if you did not write the code yourself. Additionally, it might
be challenging to set up all the tests because there are no interfaces,
and creating objects is difficult. Writing tests for existing code can
be really difficult.

Many people misunderstand the concept of testing existing code.
It is not so much about finding bugs in the existing code. At least
if you are not part of the Quality Assurance (QA) team. It’s about
creating automated documentation of the current functionality of
the code. And yes, you read correctly: What it does at the moment.
Even if you find some bugs, you should not fix them right away,
as users might rely on this buggy behavior [API]. As Hyrums law
[software engineering at google] states: “With a sufficient number
of users of an API, it does not matter what you promise in the
contract: all observable behavior of your system will be depended
on by somebody.” Or, to put it bluntly: If you have enough users,
someone will certainly rely on buggy behavior of your API. Users
are smart, and they have likely found a way to handle your buggy
code. Fixing the bugs might destroy the user’s code.

As you write tests, always ensure that they fail when you expect
them to. It has happened to me several times that some tests
unexpectedly passed without writing any code. Such checks
prevented me from hours of frustrating bug fixing. The source of
the issue was some build problems where I tested the wrong binary.
Sometimes, it was also because I simply didn’t understand the logic
behind the existing code, and I didn’t realize the featurewas already
implemented.

In the previous chapters, I recommended against testing private
methods as it violates encapsulation. Instead, you were supposed to
refactor the class and extract the private function into a new class
of its own. With the existing code, you have to be a little more
pragmatic. You can’t simply take any code and refactor it as you
please. This will certainly introduce bugs. Making these private
methods public is indeed the only way you can test the class. Once

20. Writing Better Code with Tests 202

the class is refactored, you should clean it up and make all methods
private again, as they should be.

Apparently, this approach to handling private methods is con-
sidered a hack and should only be used when necessary. It
also highlights the importance of writing tests immediately and
consistently refactoring to prevent the problem from escalating out
of control.

//more about testing existing code? See Michael Feathers’ book,
WELC.

Assertions

There were times when people thought that using assert commands
in production code was a good replacement for writing tests. This
is so terribly wrong!

The most obvious reason is that using asserts inside production
code is a violation of the SRP. You are writing tests inside produc-
tion code. I believe that nowadays it is widely accepted that tests
and production code should be stored in separate files, and ideally
in distinct folders.

Secondly, your production code is not designed to run automated
test cases. Assertions are only executed if you run the software
you create. It will highlight any violations of the assertions along
the way, but this process cannot be automated. It can be used as
something akin to an emergency sign. It is advisable to prioritize
improving the quality of your tests over relying on asserts in
production code.

Don’t get me wrong. There is nothing wrong with asserts in
general. Using asserts in production code as a substitute for tests is
not recommended. The following two code snippets are perfectly
normal and almost identical:

20. Writing Better Code with Tests 203

1 def root(x):

2 assert x >= 0, "smaller 0"

3 return x**0.5

1 def root2(x):

2 if x < 0:

3 raise AssertionError("smaller 0")

4 return x**0.5

This is because the assert statement raises an AssertionError if
the required condition is violated. You can even add a message to
the assert command using the , "smaller 0" syntax. The only
advantage of the second code snippet is that you can use custom
exceptions instaed of the AssertionError, as we’ll learn in chapter
[Bugs, Errors, Exceptions].

Now as I said, this code is perfectly fine. But it is no replacement for
unit tests as it doesn’t test anything. It only checks the precondition
of the function.

Test Driven Development

So far, we have written tests to verify the correctness of our
code. We wrote the tests once we were done with the code. But
there is nothing wrong with writing the tests upfront. It is called
Test-Driven Development (TDD) [Test Driven Development: By
Example, K. Beck, 2002]. In fact, I recommend using TDD in
general. It forces you to thinkmore about what youwant to do. You
have to figure out how the test should look before writing it. Once
the test is written, you need to think about how to implement the
feature. The importance of the test cannot be understated. It helps
you understand what you really have to do. The test forces you
to structure your code accordingly, which is a really good thing.

20. Writing Better Code with Tests 204

Before writing the implementation of a class, you must define its
interface. With TDD you decouple the code because your tests
compel you to do so.

In software development, it may happen frequently that you have a
specific model in mind intended to solve your problem. But it turns
out to be too complex, and somehow, you don’t manage to get it
working. This might be a case of YAGNI (You Aren’t Gonna Need
It) [https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it].
Chances are you will never need this complex structure. Instead,
you can write test cases for your specific requirements and ensure
that all these test cases pass. Everything else can be taken care of
later, once you determine that it is truly necessary. On a coding
level, YAGNI can be prevented by writing tests first. If you do not
need a piece of code to make the tests pass, simply do not write it.
Even if you truly believe that it would be significant, aesthetically
pleasing, and perhaps even enjoyable to write this piece of code. It
is not needed now, and chances are it will never be needed at all.

Perhaps you do not fully understand yet how TDD really works.
Don’t worry. You should maybe first gain some experience with
standard tests. If you don’t immediately see how a test should look,
at least. If you are unsure about the final appearance of the code’s
interface. Yes, there are several aspects of TDD that may seem a
little unusual, and it takes time to become accustomed to it. But
it is worth the effort. Keep trying TDD once in a while and start
using it more and more often.

How TDD Works

You should write one test for the feature you want to implement
or the bug you want to fix. I repeat: one and only one test. If you
have functional and unit tests (which I hope you do), you might
have one pending test case for each of them. There should be a test
case that currently fails. If both, unit and functional tests, pass, you
can take a day off.

20. Writing Better Code with Tests 205

Just kidding. If a test passes for an unknown reason, this is a serious
issue that you have to investigate. Perhaps a feature has already
been implemented, or your test may not be evaluating its intended
functionality and needs to be refined.

Otherwise, you should start implementing. Figure out why the test
fails. For new features, it’s usually obvious. The test is currently
evaluating a feature that has not been implemented yet. Now it’s
your task to write just enough code so that the test passes. No less
and no more. You don’t have to write great code at this step. Just
make sure you find a satisfactory solution to ensure the test passes.

Once the test passes, you might have to refactor the code a little to
get it back into shape. You have already written all the necessary
test cases as a safety precaution. And then you are allowed to
write the next test case until you are done with the feature and
the acceptance test passes as well.

There is a simple pattern for writing code in TDD.

1. Write a failing test.
2. Write code until the test passes.
3. Refactor if necessary.

These three steps must be repeated over and over again until you
have completed your ticket.

Also, with TDD you have to do some significant refactoring occa-
sionally. This is inevitable and has to be taken into consideration.
These refactorings involve entire components, requiring you to
work with multiple classes simultaneously.

The Importance of TDD

As we learned in the chapter on interfaces, they should always be
defined from the user’s perspective. With TDD, you are adopting

20. Writing Better Code with Tests 206

the user’s perspective of your code. When writing a test, you are
a user of the corresponding piece of code. Therefore, writing your
tests before the code forces the programmer to adapt the code to
the test. This is a good thing. It forces the programmer to write
code that adapts to the user, making the interface of the code more
user-friendly. Even if you don’t apply TDD all the time, you still
get used to write code that is easy to test and therefore also easy to
use.

Example of TDD

TDD is best understood by examining a brief example. Let’s write
a program that converts Arabic numbers (the ones we use) into
Roman numerals. As we learned just now, we start by writing the
first test case.

1 # inside test_roman_numbers.py

2 from roman_numbers import *

3

4 def test_one():

5 assert roman_numbers(1) == "I"

If we run the test, it fails as was expected. But we can make it pass
easily.

1 # inside roman_numbers.py

2 def roman_numbers(_):

3 return "I"

This may look odd at first sight, but it is perfectly viable code in
TDD. There is no duplication and it does everything required to
make the test pass, even if the function argument just gets ignored.
As there is nothing to refactor, we can continue with the second
test.

20. Writing Better Code with Tests 207

1 def test_two():

2 assert roman_numbers(2) == "II"

1 def roman_numbers(n):

2 if n == 1:

3 return "I"

4 else:

5 return "II"

The code from the initial test is no longer adequate. We have to use
at least some if/else clauses. You might feel the urge to refactor
this code. But, at least for the time being, we leave it as it is. The
need to refactor this code is not strong enough yet.

There is a rule of thumb stating that a one-time repetition of the
code is acceptable and does not need to be refactored immediately.
Only if the same code is repeated two times or more, should it
be refactored, as this may lead to a better understanding of the
problem. However, this rule contradicts the DRY principle to
some extent. As you can see, we have few strict rules in software
engineering. It is always a trade-off between different principles.

1 def test_three():

2 assert roman_numbers(3) == "III"

1 def roman_numbers(n):

2 if n == 1:

3 return "I"

4 elif n == 2:

5 return "II"

6 else:

7 return "III"

Now the if/else statements start to take over. We have 3 possible
cases andwith a little bit of thinkingwe find an easyway to refactor
them away. The new version of the code might look like this:

20. Writing Better Code with Tests 208

1 def roman_numbers(n):

2 return n*"I"

Let’s add a fourth test:

1 def test_four():

2 assert roman_numbers(4) == "IV"

We don’t know yet how to deal with numbers > 4, so we may return
any value we want.

1 def roman_numbers(n):

2 if n == 4:

3 return "IV"

4 return n*"I"

For 5 we can just continue with the same pattern.

1 def test_five():

2 assert roman_numbers(5) == "V"

1 def roman_numbers(n):

2 if n == 5:

3 return "V"

4 elif n == 4:

5 return "IV"

6 return n*"I"

Two tests later we are again at the point where we have to refactor.
This time we have to think a little harder how the logic of the
function really works. One possible outcome of this refactoring
is the following code:

20. Writing Better Code with Tests 209

1 def roman_numbers(n):

2 num = ""

3 while n >= 5:

4 num += "V"

5 n -= 5

6 while n >= 4:

7 num += "IV"

8 n -= 4

9 while n >= 1:

10 num += "I"

11 n -= 1

12 return num

In a second refactoring step we wrap the whole while loops into a
single for loop.

1 def roman_numbers(n):

2 roman = ""

3 arabic_to_roman = {5:"V", 4:"IV", 1:"I"}

4 for arabic in arabic_to_roman:

5 while n >= arabic:

6 n -= arabic

7 roman += arabic_to_roman[arabic]

8 return roman

Supporting larger numbers can be achieved by adding them to the
beginning of the arabic_to_roman dictionary. Note that I used a
dictionary instead of a list of lists. This is because, as I mentioned
in chapter [Data Types], all list elements should be treated equally.
Thus, having a list [[5, "V"], [4, "IV"], [1, "I"]]would violate
this principle. On the other hand, this approach using a dictionary
is a little bit fragile. It is only guaranteed to work for Python
versions >= 3.7 because dicts are guaranteed to maintain their order
only since then. The following solution would probably be the best
option as it is more robust, even though it is slightly longer. Though
here we go into the realm of premature optimization.

20. Writing Better Code with Tests 210

1 from dataclasses import dataclass

2

3 @dataclass

4 class NumberPair:

5 arabic: int

6 roman: str

7

8 def roman_numbers(n):

9 roman = ""

10 arabic_roman = [NumberPair(5, "V"), NumberPair(4, "IV\

11 "), NumberPair(1, "I")]

12 for number_pair in arabic_roman:

13 while n >= number_pair.arabic:

14 n -= number_pair.arabic

15 roman += number_pair.roman

16 return roman

The remaining tests and implementations are straightforward. I’ll
leave them as an exercise for the reader.

Stubs, Fakes, and Mocks

// chapter 19 Types of tests, Mock and Stubs has some redundancy
with this chapter. Maybe merge them?

In many instances, you may need to write a test, but the code you
intend to test includes elements that you prefer not to test. For
example a database or an internet connection. You want to create
a fake database that returns the expected value and never fails.
The solution is to create your own database. Not a complete one,
of course. One that does only what you really need for this test
case. It implements every function you call and returns the values
you desire. You may need to incorporate a significant amount
of logic into the fake database to achieve the desired behavior,

20. Writing Better Code with Tests 211

depending on the complexity of your test cases. Perhaps you
need separate mock databases for various tests. You might need a
dedicated database that throws an exception in some special cases.
Programming fake objects altogether is a lot of work, and it makes
the code rigid because not all the functionalities of the fake object
are implemented.

There are many ways to set up a fake object. We will only look at
two of them: faking and mocking.

Mocking

[clean craftsmanship, p.118]

The first approach is to utilize an existing database and modify
some of its functionalities using a mocking framework. In the
following example, we simulate the result of reading a CSV file. In
Python, this can be easily achieved using the Mock library. Most
other programming languages have similar mocking libraries too.

1 from important_stuff import read_csv

2

3 from unittest.mock import Mock

4

5 def read_csv(file_name):

6 # ...

7 return [1,2,3] # ...

8

9 def test_mock_important_stuff():

10 # Override the `read_csv` function defined in importa\

11 nt_stuff.py and return some values.

12 read_csv = Mock(return_value=([4, 5, 6]))

13 assert read_csv("unexisting_file.csv") == ([4, 5, 6])

This test passes even if the file passed as an argument does not

20. Writing Better Code with Tests 212

exist. An alternative to using the mocking framework is to use
dependency injection. This is explained below.

Mocks have some predefined behavior. In this case, it simply
returns the values defined. Mocks are different from fakes, as they
mimic real behavior to some extent. Setting up mocks is much
easier compared to fakes.

However, there is a caveat with mocks. There is a better solution:
Dependency Injection (DI). I like DI much better than mocking. In
my opinion, mocking is a hack to get away with sub-optimal code
and should not be used, unless you have to work with existing code
where DI is not an option. Here is what the code looks like with DI
instead of mocking:

1 def read_csv(filename):

2 # ...

3 return [1, 2, 3]

4

5 def mock_reader(_):

6 return [4, 5, 6]

7

8 def read_data_from(reader, filename):

9 return reader(filename)

10

11 def test_mock_important_stuff():

12 data = read_data_from(mock_reader, "")

13 assert data == [4, 5, 6]

With this code here you can define your own reader function
without the use of a mocking library. And I think the code has
become much clearer.

Faking

[clean craftsmanship, p.118]

20. Writing Better Code with Tests 213

A fake is a functional replica of the object you intend to substitute,
although it is a simplified version. For example, the fake CSV reader
in the following example does not read a file from the disk; instead,
it simply returns a string stored in the code. When running tests,
this approach is typically sufficient without the inconvenience of
managing the file system, where your original data could be easily
deleted or tampered with by others.

In the following example, the FakeCSVReader does not write the data
to a file but stores it in a local variable.

1 class CSVReader:

2 def __init__(self, filename):

3 self.filename = filename

4

5 def write(self, data):

6 with open(self.filename, 'w') as f:

7 f.write(data)

8

9 def read(self):

10 with open(self.filename, 'r') as f:

11 return f.read()

12

13 class FakeCSVReader:

14 def __init__(self, _):

15 pass

16

17 def write(self, data):

18 self._data = data

19

20 def read(self):

21 return self._data

This FakeCSVReader clearly does not have a complete implementa-
tion of the CSVReader. It has just enough capacity to store some
data and retrieve it later. But this might be enough to make your

20. Writing Better Code with Tests 214

tests pass. Fakes should be used whenever a mock is not sufficient
for your test case. The fake has much more functionality.

Dependency Injection

Faking and mocking are closely related to dependency injection
(DI).

When using DI you can create a new object from scratch, for
example, an object that returns an API key. Now let’s first look
at the code without DI.

1 import os

2

3 class ApiClient:

4 def get_api_key(self):

5 return os.getenv("API_KEY")

6

7 def main():

8 print(ApiClient().get_api_key())

9

10 if __name__ == "__main__":

11 main()

The API key is generated within the ApiClient class. This is bad for
several reasons. Testing it is challenging. It is not easy to replace
the API key with a fake one. Secondly, it is difficult to reuse. If
you want to use the same API key in another class, you will need
to copy the code.

If you want to change the api_key for testing purposes. One thing
you can do is make the following selection:

20. Writing Better Code with Tests 215

1 import os

2 import sys

3

4 class ApiClient:

5 def get_api_key(self, is_testing):

6 if is_testing:

7 return "1234"

8 return os.getenv("API_KEY")

9

10 def main(is_testing):

11 print(ApiClient(is_testing).get_api_key())

12

13 if __name__ == "__main__":

14 is_testing = "testing" in sys.argv

15 main(is_testing)

This, however, is considered bad practice. As we learned in the
section on booleans [chapter Data types], such selections should
not be postponed. Passing around booleans or strings is considered
bad practice. Even if you replace the boolean with an enum, you
should still avoid postponing this decision.

A better solution is using DI. Already in the line is_testing =

"testing" in sys.argv we know whether we want to use a fake
API key or the real one. Thus we can already at this point select the
corresponding ApiClient and then pass it on, rather than some flag.
Like this, the desicion is resolved on the highest level of abstraction,
inside the main function.

20. Writing Better Code with Tests 216

1 import os

2

3 class ApiClient:

4 def get_api_key(self, is_testing):

5 if is_testing:

6 return "1234"

7 return os.getenv("API_KEY")

8

9 def main(is_testing):

10 print(ApiClient(is_testing).get_api_key())

11

12 if __name__ == "__main__":

13 is_testing = "testing" in sys.argv

14 main(is_testing)

15

16 import os

17 import sys

18

19 class ApiClient:

20 def get_api_key(self):

21 return api_key = "API_KEY"

22

23 class FakeApiClient:

24 def get_api_key(self):

25 self.api_key = "1234"

26

27 def main(client):

28 print(client.get_api_key())

29

30 if __name__ == "__main__":

31 if "testing" in sys.argv:

32 main(FakeApiClient())

33 else:

34 main(ApiClient())

In DI you pass a higher object like a class instance or a function as

20. Writing Better Code with Tests 217

a function parameter as done here in the call of the main function.
Here we used the api_client as a function argument which can be
either a FakeApiClient or a normal ApiClient.

DI is a little odd at the beginning. I recommend you read this
section again, search some additional examples online and play
around with it. The important part is that you select the relevant
behavior as early as possible in the program, rather than passing
around boolean variables.

Using DI is generally a highly recommended practice and should
always be employed when dealing with IO, time, random numbers,
API keys, selecting an algorithm etc. This is because you can easily
replace the injected code with something else.

The only drawback of DI is that the object has to be passed through
the entire stack until it reaches the point where the API key is
actually used. This leads to functions containing many arguments.
But what would the alternatives be?

1. Do not pass any additional argument through the stack. This
would prevent you from altering/testing the code.

2. Pass a string or an integer through the entire stack and make
a selection based on its value, similar to how it is done with
the "testing" value in the second example. This wouldn’t
be any better than passing the ApiClient object. Rather the
opposite. It is better to pass a high-level object than passing
a string, as this allows for making a selection based on it.

When you need to make a selection, such as when you want to
change a value for testing purposes, using DI is the optimal choice.
Delaying the decision would require you to pass around a boolean
or string instead, which is considered bad practice. Selections
should always be resolved promptly. And DI allows you to do
exactly that.

DI is very similar to the strategy design pattern. The main
difference lies in what you want to achieve. DI is primarily used for

20. Writing Better Code with Tests 218

testing, while the strategy pattern is generally employed to enable
the user to make a selection at runtime.

One of the few downsides of DI is that it may make the code harder
to understand. To understand what’s going on, you have to look
through many functions to figure out which code got injected.
For this reason, it is recommended to use DI only for things that
are expected to change. It should be mostly used for the reasons
mentioned above: IO, time, random numbers, API keyt and other
things you want to change when testing or running the code,
respectively.

Summary

Don’t worry if you haven’t understood everything. I just briefly
explained dependency injection, faking, mocking, etc., which are
all fairly advanced topics. I hope you have grasped some of the
fundamental ideas I attempted to explain here. They can be useful,
and the ideas behind them are very important. Especially TDD and
DI were crucial topics in this chapter. If you want to have an in-
depth look at some of the things we discussed here, I recommend
exploring these two topics. There is plenty of literature available
that delves into much more detail than I have provided here.

As always, many books only focus on OO programming. They
only explain dependency injection for classes. However, having
classes is not a strict requirement for dependency injection or the
strategy pattern. In programming languages that support function
pointers or duck typing, you can also pass different function objects
as function arguments. This has the advantage that you don’t
have to deal with base classes and so on. Function pointers are
not commonly used because they can only be utilized for simple
objects, whereas complex objects are typically injected. While
I generally recommend using dependency injection with class
objects instead of injecting function objects. Simply because it can

20. Writing Better Code with Tests 219

be used in all major programming languages in the same way, and
you don’t have to learn anything new.

So far, we have covered the technical implementation and intro-
duced mocking and faking. But the real problem is yet to come.
The question is how and what to test. Apparently, it is not a
viable solution to create a full database simulation every time it
is required. This is not only a hell of a lot of work. It also makes
the code inflexible.

Copilot

Copilot is knowledgeable about dependency injection, as demon-
strated in the Copilot example in the chapter on functions [chapter
functions]. The difficult part is figuring out how to make Copilot
utilize DI. When implementing a regular reader and a function,
and defining the reader_type, Copilot recognizes that Dependency
Injection should be used in the final line of the code here. I once
again had to write very little code to make Copilot understand my
intentions. I had to define the class lines as well as the reader_type
= "mock" line, and Copilot did the rest.

1 class CSVReader:

2 def __init__(self, filename):

3 self.filename = filename

4

5 def read(self):

6 with open(self.filename, 'r') as f:

7 return f.read()

8

9 class CSVReaderMock:

10 def __init__(self, filename):

11 self.filename = filename

12

20. Writing Better Code with Tests 220

13 def read(self):

14 return "Mocked CSV data"

15

16 reader_type = "mock"

17 if reader_type == "mock":

18 reader = CSVReaderMock("data.csv")

19 else:

20 reader = CSVReader("data.csv")

21

22 def process_data(reader):

23 return reader.read()

24

25 print(process_data(reader))

Part 4: Design Principles

21. SOLID principles
“It is not enough for code to work.” Robert C. Martin

Source: [https://youtu.be/pTB30aXS77U], [https://youtu.be/9ch7tZN4jeI]
and [Clean Architecture]

The solid principles were named by Robert C. Martin. SOLID is
named after 5 general rules how to write object oriented (OO) code.
These are:

1. Single Responsibility Principle (SRP)
2. Open closed principle (OCP)
3. Liskov substitution principle (LSP)
4. Interface segregation principle (ISP)
5. Dependency Inversion principle (DIP)

These 5 quite general rules describe mostly how classes, and also
code in general, should be structured and interacting with each
other. Obeying them helps with the design of the code.

Interestingly enough, many people agree on the fact that these
principles are (or at least were) important, but there is no exact
common agreement what some of these principles mean exactly.
In my opinion, these principles hold for compiled languages as Java
and C++. For interpreted languages like Python, only the SRP is
really important and the OCP and the LSP are somewhat useful.
The ISP and the DIP are nice to know but they are only important
in compiled languages. We’ll see why in a minute.

21. SOLID principles 222

Single Responsibility Principle

The SRP has already been explained in its own chapter due to
its enormous importance. At the time of writing I counted 60
occurances of the abbreviation “SRP” in this book here!

Open Closed Principle

“Software entities (classes, modules, functions, etc.) should be open
for extension but closed for modification.” - Bertrand Meyer

The Open Closed Principle (OCP) was first mentioned by Bertrand
Meyer in 1988. It is stated that an object should be open for ex-
tension and closed for modification. The original version suggests
using inheritance to achieve this goal. [Object-Oriented Software
Construction, B. Mayer] This is an unfortunate choice. Robert C.
Martin suggested using interfaces instead [?]. Interfaces allow you
to add multiple implementations at a relatively low cost, while
modifying the interface itself can be quite expensive. Each class
implementing that interface would also need to be modified.

Our code should be stable with respect to extensions in the future,
but not to changes. If the requirements change, we must also mod-
ify our code. This is inevitable. But we shouldn’t have to change
our code if someone else wants to extend their code. Therefore,
the solution is to utilize abstractions at possible abstraction points.
This allows the user of our code to extend it without requiring any
modifications to our code.

Let’s consider a brief example. We have a class containing some
postal codes of Swiss cities. If we want to add another city, we
would need to include an extra function in this class. The class
City is not open for modification. We have to modify it every time
we add another city. This class does not adhere to the OCP.

21. SOLID principles 223

1 class Cities:

2 def zurich_postal_code(self):

3 return 8000

4 def bern_postal_code(self):

5 return 3000

6

7 def print_all_postal_codes():

8 cities = Cities()

9 print(cities.zurich_postal_code())

10 print(cities.bern_postal_code())

If the user of this code wishes to add another city, they will need
to do so within our own code inside the Cities class. We have
to modify the class Cities. This is the opposite of what the OCP
wants to achieve. The OCP wants to separate the user code from
the interface.

Instead, we can create an interface called City and implement it
for every city we are interested in. We are free to add an additional
city if we choose to. We don’t have to change any existing class
or interface. Instead, we can create a new object to extend the
implementation of the city interface. The code below adheres to
the OCP.

1 from abc import ABC, abstractmethod

2

3 class City(ABC):

4 @abstractmethod

5 def postal_code(self):

6 pass

7

8 class Zurich(City):

9 def postal_code(self):

10 return 8000

11

12 class Bern(City):

21. SOLID principles 224

13 def postal_code(self):

14 return 3000

15

16 cities = [Zurich(), Bern()]

17 for city in cities:

18 print(city.postal_code())

Now, this code, on the other hand, fulfills the OCP. If the user wants
to add another city, they can create as many additional cities as
they want, and we don’t have to worry about it. The base class
City defines the interface, which is sufficient for us to work with
any class the user adds. Of course, there are many other possible
implementations of the OCP. Especially in a dynamically typed
language like python. The code above is just an example.

If you like design patterns, the code here is a classic illustration
of the OCP. It is the strategy design pattern [Design Patterns].
However, you might also consider using the decorator pattern,
which also satisfies the OCP.

Liskov Substitution Principle

// see https://youtu.be/pTB30aXS77U

“If it looks like a duck, quacks like a duck, and needs batteries, you
probably have the wrong abstraction.” - Wisdom of the Internet

Implementation of interfaces should not blindly adhere to the “is a”
principle. This is only a rule of thumb and not sufficient. Instead,
the implementations really have to share the same interface.

For example, credit cards and PayPal should not implement
the same payment system interface, even though they
are both payment methods. The credit card requires a
card number, while PayPal requires an email address
[https://youtu.be/pTB30aXS77U?t=455]. This leads to a situation

21. SOLID principles 225

where you are unsure about what the payment interface should
accept as an input argument.

1 class Payment:

2 def make_payment(amount, card_number_or_email_address)

This logical contradiction regarding whether the second argument
should be (email address or card number) violates the Liskov
substitution principle. Credit card payments and PayPal payments
should not use the same interface.

Instead, the selection of the credit card number or the email address
should be done later, within the specific classes. It is there that these
credentials have to be requested from the user.

1 from abc import ABC, abstractmethod

2

3 class PaymentSystem(ABC):

4 @abstractmethod

5 def make_payment(self):

6 pass

7

8 class PayPal(PaymentSystem):

9 def make_payment(amount):

10 # ask the user for the email address

11 # make a payment using the email address

12

13 class CreditCard(PaymentSystem):

14 def make_payment(amount):

15 # ask the user for the credit card number

16 # make a payment using the credit card number

21. SOLID principles 226

Interface Segregation Principle

“Clients should not be forced to depend upon interfaces that they
do not use.” — Robert C. Martin

The Interface Segregation Principle (ISP) is similar to the SRP for
interfaces. Interfaces should be split up into many small parts. This
is important in order to maintain low coupling. You don’t want to
import and compile a huge library solely for one small feature. If
there are separate logical blocks within a library, ensure that they
are also made available separately.

Here, file A does not comply with the ISP. It does two independent
things. Most other code only needs one of these functions. They
are independent. Thus, they should be in different files.

Now in Python, this is not such a big deal because you can import
each function individually. Even if you import the whole file A, it’s
not a big deal. It’s not becoming slow. In C++, on the other hand,
adding unrelated functions in the same file is really a no-no. In
C++, you always include an entire header file at once, and you will
have to compile everything that is included with it. There might be
a hefty price to pay if file A is too large.

1 // C++

2 // file A.h

3 int function_1(){

4 return 1;

5 }

6

7 int function_2(){

8 return 2;

9 }

10

11 // and many more functions

// add graphs on the file dependencies below

21. SOLID principles 227

The solution is to split up the file A into two subfiles, A1 and A2.
The goal is to find a way to achieve this so that the majority of the
other files utilize only one of the newly created files, A1 and A2. A1
and A2 should exhibit high cohesion within themselves, but there
should be low coupling between them. Ideally, the amount of code
that you’ll have to import is reduced by roughly half.

This process of breaking up files can be repeated until it is no longer
possible to reduce the amount of imported code, or the number of
imports would be growing unreasonably fast. At this point, you
have finished segregating file A.

1 // C++

2 // file A1

3 int function_1(){

4 return 1;

5 }

6

7 // file A2

8 int function_2(){

9 return 2;

10 }

A well-known example of interface segregation is the standard
library in C++. All the functionality is defined inside the std::

namespace (std:: a namespace, not a class!), but the whole library
is split up into many different files. Importing the entire standard
library solely for the sake of using a small portion of it would
significantly increase compilation times tremendously.

Another common example is defining an enum inside a class, while
other parts of the code might also need access to this enum. This
section of the code needs to import the entire class that contains the
enum, even though it only requires this simple enum and nothing
else. This code imports more modules than necessary.

21. SOLID principles 228

1 # inside ImportantStuff.py

2 from enum import Enum

3

4 class BigClass:

5 class Color(Enum):

6 RED = 1

7 GREEN = 2

8 BLUE = 3

9 # and much more code here

10

11 # inside SomeOtherFile.py

12 from ImportantStuff import BigClass

13

14 color = BigClass().Color.BLUE

Here, we first need a class instance of BigClass because the enum
is encapsulated within the class definition. This issue could be
avoided by moving the enum outside the class. This would reduce
the coupling of the code because the user code would only depend
on the enum and not on the entire class surrounding it.

The code would be much better as follows:

1 # inside ImportantStuff.py

2 from enum import Enum

3

4 class Color(Enum):

5 RED = 1

6 GREEN = 2

7 BLUE = 3

8

9 class BigClass:

10 # much more code here

11

12 # inside SomeOtherFile.py

13 from ImportantStuff import Color

21. SOLID principles 229

14

15 color = Color.BLUE

By doing this, you have segregated the interface, and you don’t
have to import the BigClass.

Dependency Inversion Principle

“High-level modules should not depend on low-level modules” -
Unknown

The Dependency Inversion Principle (DIP) is a technique used in
languages such as C++ and Java to significantly reduce compilation
times. The files in your project reference each other and form a tree
structure. The so-called dependency tree. The main function is at
its root. The leaves of the tree represent low-level functions in your
code and other libraries, as we have learned in the chapter on levels
of abstraction. The main function is the root.

// add a graph for the dependency tree

For interpreted languages like Python, the dependency inversion
principle is not as crucial. This technique is primarily used to
break compilation dependencies that do not exist in interpreted
languages. Though it’s still important to understand this principle
as a Python user because it is very fundamental.

The first time you compile your code, the entire codebase (the
complete dependency tree) needs to be compiled. This can easily
take minutes, maybe even hours. The resulting binary files carry
a timestamp. If you recompile your code later, only the files that
have changed since the last compilation need to be recompiled. For
minor modifications, this reduces the compilation time to just a few
seconds. However, there is a serious problem. As you change a file,
you also affect all files that include this file, directly or indirectly.
Everything in the branch of the tree up to the main function. A

21. SOLID principles 230

small change in a library file can cause significant portions of the
code to recompile. For everyone working on the project. This is
why software developers often spend a lot of time in front of the
coffee machine, waiting for their code to compile.

We first have to understand the source of this problem. As I
mentioned before, it has to do with the includes (or imports).
The main file includes all the other files. It is the root of the
dependency tree. If one file changes, the main file changes as well
because it directly or indirectly includes all other files in the project.
Therefore, the main file has to be recompiled as well. It’s like a hard
link.

Instead, wewant a soft link. Main should depend only on the public
interface of a library, not its implementation. To ensure that the
main code remains unaffected by internal changes within a library.
If I modify a file within a library, such as the sin function in the
math library, I aim to recompile solely the math library. I want to
cut off this library branch from the dependency tree and handle it
separately. Main shouldn’t know about anything going on within
the math library. Main shouldn’t have to recompile if the code
within the math library changes. Main should only change if the
public interface of math changes.

This is where dependency inversion comes into play. It does exactly
what I just described. It breaks a branch off of the dependency tree
and instead loosely couples it through the interface of the branch.
You can achieve this by defining an abstract base class (interface in
Java) that outlines the structure of the interface. The file containing
this interface does not have any dependencies. It’s on the lowest
level of the dependency tree. Or at least in something akin to a
local minimum. The old interface code of the library inherits from
this interface. It implements it. As the main user of this library,
initially, it only has information about the interface. Everything
else is hidden as it is not included. Unless you modify the interface,
altering code within the library will not trigger recompilation of
any other files.

21. SOLID principles 231

Example

As I said before, the DIP is important for compiled languages.
Therefore, the following code example is written in C++.

Let’s consider a class Nothing with a method do_nothing. Now
we want to modify the code so that main does not recompile if the
implementation of do_nothing changes.

1 class Nothing{

2 void do_nothing() {}

3 };

4

5 int main(){

6 auto nothing = Nothing();

7 nothing.do_nothing();

8 }

Now main depends on the Nothing class and everything that’s inside
it. Instead we can define an interface for Nothing and break this
dependency.

1 // inside NothingBase.hpp

2 class NothingBase{

3 public:

4 virtual void do_nothing() = 0;

5 };

6

7 // inside Nothing.hpp

8 #include "NothingBase.hpp"

9

10 class Nothing : public NothingBase {

11 public:

12 inline void do_nothing() override{

13 std::cout << "nothing" << std::endl;

14 }

21. SOLID principles 232

15 };

16

17 // inside main.cpp

18 #include "NothingBase.hpp"

19 int main(){

20 auto nothing = std::make_unique<Nothing>();

21 nothing->do_nothing();

22 }

Now, main depends only on the interface of NothingBase, not on the
implementation defined in Nothing. Changing the implementation
of Nothing does not affect main. Therefore, main does not need
to be recompiled if Nothing changes! main and Nothing are only
connected by the linker. The linker will ensure that the main
function calls the correct implementation of this library.

// Dependency Tree Graphs

Summary

I believe this was the longest section in the book where I delve into
technical details for C++ that may not be essential for Python users.
At the same time, I would like to emphasize that this section was
very important for C++ and Java programmers. Both for the quality
of the code and for understanding how the concepts of includes,
compiler, and linker work.

22. Software Engineering
Principles

In this chapter, I explain some very general design principles that
I learned from a YouTube video [https://youtu.be/XQzEo1qag4A]
published by the channel “Tech with Tim”. I really liked these very
general principles and therefore decided to write a chapter about
them.

Divide and Conquer

If you have a huge problem, you won’t be able to solve it all at once,
down to the last detail. It’s too difficult. But what you might be
able to do is break out pieces of this problem and solve them. This is
generally how software is designed. Break the problem into small
pieces and then reassemble them. A common example is the Fast
Fourier Transform (FFT) or the merge sort. Usually, a divide and
conquer algorithm is applied if the classical algorithm scales with
O(N^2), but it can be subdivided into smaller problems. Divide
and Conquer algorithms typically scale with O(N log N), which is
generally acceptable. Furthermore, Divide and Conquer algorithms
can be parallelized to some degree, which can significantly enhance
the overall performance.

Increase Cohesion

Cohesion is closely related to the section [Correlation] that we
previously discussed in the chapter on the Physical Laws of Code.

22. Software Engineering Principles 234

Similar things that possibly depend on each other should belong
together. Mathematical functions are stored together in the math
library, and IO functions are in the IO library. This makes is easier
to search for some function. Mixing these two libraries would only
cause confusion because it would make it difficult to find what you
are looking for.

Reduce coupling

Reducing coupling is an important topic in classes [chapter classes].
Ensure that the classes are as independent as possible. You don’t
want your math library to depend on the filesystem library. Even
if it might make sense from a developer’s point of view (although it
would be difficult to explain in this context), you should minimize
the number of dependencies asmuch as possible. Only import other
libraries when it is absolutely necessary.

The same holds true not only for libraries but also for all other code
that you write. Try to keep them all as independent as possible.
Ensure that you properly structure the levels of abstraction in
your code. Low-level code should not depend on high-level code,
and so forth. Otherwise, your code may become a Big Ball
of Mud [https://en.wikipedia.org/wiki/Anti-pattern#Software_en-
gineering_anti-patterns].

Increase abstraction

Abstraction is about omitting unnecessary details and instead
focusing on the essential elements. You have to design interfaces
that are sleek and highly versatile. For example, let’s consider a
car once again. You should aim to make the parts as generic as
possible. You want to fit any engine into any car. This can only
be achieved by unifying the interface of the engine, the brakes, etc.

22. Software Engineering Principles 235

All the details of the engine are abstracted away and hidden inside
the engine so that the chasis of the car does not interact with its
internals.

If you don’t abstract all the details, you may end up with multiple
functions to manage various engines due to the need to address
specific characteristics. If this is the case, you’ll have to write an
adapter for each engine to abstract away their peculiarities.

Increase Reusability

Reusability comes hand in hand with increased abstraction. Leav-
ing out all the details of an object reduces it to a fundamental
building block that can be more easily reused. Because general
objects are more likely to fit as a building block than something
very specific. Just take, for example, all of the “standard” li-
braries. They all perform one fundamental task: interacting with
the filesystem, conducting mathematical operations, or generating
random numbers. Of course, it would sometimes make sense to
combine these, but that would probably not result in reusable code
anymore because it is too specific. It is advisable to write such
specific code only when absolutely necessary.

Design for flexibility

Your code will change. It’s inevitable. So, start living with this fact.
Requirements will change, and you’d better ensure that your code
can adapt. Therefore, it’s important that your code follows the rules
that are explained in this book. You need tests to be able to modify
your code. To prevent your code from becoming as solid as a rock,
you must follow best practices. You want your code to be fluffy
and easy to modify.

22. Software Engineering Principles 236

As an example, you might use a Fourier transform or a sorting
algorithm in your code. Well-written code is flexible enough
to replace these algorithms without much fuss. You won’t have
to change code in multiple locations. It’s more like a surgical
operation where you change only one thing.

Anticipate Obsolescence

Code you use will become obsolete. Version changes, bugs, and
security issues are not fixed; license fees are becoming too high,
you name it. There are plenty of reasons why you need to adapt
andmodify third-party libraries or at least adjust to new syntax. So,
you should anticipate that you may need to replace some libraries
by adding an adapter between the library and your code. This will
simplify reacting to changes. You can simply create an adapter for
the new library, eliminating the need to modify all the existing
code.

You have to anticipate obsolescence by keeping your code flexible
and reusable. The database code should not be scattered through-
out your entire codebase. This would be the exact opposite of what
we desire. It would take enormous effort to replace it. Instead, you
should be able to replace it easily.

There are cases where you might think you’d never have to replace
a piece of code. How wrong you are. No matter how important a
library may seem to you, at some point, you will have to replace it.
Many companies have written their code with an Oracle database
in mind. And now they would like to change it because of the high
fees. But they can’t because the Oracle database code is spread all
over the code base.

22. Software Engineering Principles 237

Design for Testability

I believe this is the most evident point in this chapter. I have
explained numerous times that you need to write tests. If writing
tests for your code is easy, then writing code using the interfaces of
your code is also easy. Or even better, use Test Driven Development
(TDD). TDD forces you to write code that is easy to test. Thus, it
forces you to write good code.

Hand in hand with testing comes Dependency Injection (DI). There
are many things for which writing tests will be brittle. Files can be
deleted, the network connectionmight fail, timestamp comparisons
will return a different result at some point, etc. These are all
issues that should be addressed with DI. Inject a mock file or a
fake timestamp into the function, and your tests will become much
more stable.

Pay Now or Pay More Later

Pay now or pay more later is a very well known issue, not only
in software engineering. If you hurry writing code, you pile up
technical debt that will slow you down on the long run. If you
don’t fix it now, you pay the price along the way. Now this sounds
terrible and it may be. But it’s not always as terrible as it sounds.
Because later your company will have grown and you will have
more resources to fix the technical debt.

Just imagine Amazon. The first version of their website was very
basic. It was just a list of books that you could search using the
author name or the book title. Of course, from a current point of
view, this is unimaginable. But it was enough to get started. And
now, 30 years later, they rewrote the entire website several times.
Jeff Bezos doesn’t care anymore about the few thousand dollars he

22. Software Engineering Principles 238

payed for the first version of his website. Fast time to market was
more important.

That being said, you have to knowwhere you can go fast and where
technical debt will bite you right away. For example, it is always
worth setting up your CI/CD environment properly, unless you
work on a really small project. Unit tests also pay off quite quickly.
On the other hand, it is not worth searching for appropriate variable
names for hours. Ok is usually good enough.

Part 5: Programming

23. Programming
Paradigms

“Object-Oriented programming at the edges of your system always
has side effects. Because otherwise, it wouldn’t do anything.” -
David Farley [https://youtu.be/Ly9dtWwqqwY?t=776]

There are several different programming paradigms. For several
decades, Object-Oriented (OO) programming was the preferred
approach. But it turned out that OO programming has its own
problems as well. As I have already mentioned several times, our
goal is to write code that is easy to understand. It is not our goal
to write OO code at all costs. Procedural and Functional program-
ming are equally valid programming paradigms, depending on the
problem to be solved. Nowadays, there are also multi-paradigm
programming languages like Python and the good old C++, where
you can combine these three different programming paradigms to
some degree.

Here is a very short list of what the different programming
paradigms offer:

• OO programming: classes, mutable, non-constant variables,
loops

• Procedural programming: data classes, mutable, non-
constant variables, loops

• Functional programming: data classes, only constant vari-
ables, recursion

Functional programming is essentially a subset of procedural pro-
gramming, which in turn is essentially a subset of OO program-
ming. But this doesn’t mean that functional or procedural pro-
gramming is necessarily inferior to OO programming. Limiting

23. Programming Paradigms 240

the number of possibilities can make the code easier to understand.
For example, the fact that functional programming does not have
mutable variables excludes many possibilities that you need to
consider when reading procedural or OO code.

Object-Oriented Programming

Object-Oriented (OO) programming started in the 1970s. It peaked
with the still very widely used languages C++ and Java. Some-
how, the entire software developer community became absolutely
ecstatic about it. OO programming is great. It is the natural
representation of things. It makes everything so easy. It will save
the world!!!

It still amazes me how some half-baked promises can create such
dynamics in a group of highly intelligent people. Come up with
some buzzwords, and the crowd will do the rest. Already in
times before social media. The only explanation I have is that
the software engineers were all secluded in their basement and
missed everything else out there. They had to create their own
hype instead.

Well, let’s be serious. As always, the truth lies somewhere in the
middle. Yes, OO programming can make things easier. But it did
not save the world. And many of the concepts that were developed
alongside OO programming are simply not useful. Without the
hype surrounding OO programming, these concepts would never
have gained widespread usage. People stopped thinking critically
and just started using all kinds of OO features that turned out to
lead to terrible code.

Don’t use any OO feature other than plain classes and abstract base
classes or interfaces. Don’t forget to make everything private that
should be. Always keep the SRP in mind. Classes should be small!!!

23. Programming Paradigms 241

Procedural programming

[https://en.wikipedia.org/wiki/Procedural_programming]

While OO programming is mostly based on classes, class instances,
and methods, procedural programming depends mostly on func-
tions and logical operations. Though you can still define your
own data types, such as structs in C, in procedural program-
ming, functions are more important than data types. Contrary to
functional programming, in this programming paradigm, you are
allowed to have modifiable variables and output arguments. OO
programming may be easier to write code, but on the other hand, it
may make the code hard to understand if the classes are too large.

Having only structs in C, compared to classes in C++, apparently
has some drawbacks. One option is writing structs the way classes
are written. Just that everything is public. But this is not a good
coding practice. Instead, you have to adapt to a different coding
style. You have to find a way around using classes with private
members. As we have seen in the chapter on classes, there are
three fundamental types of classes:

• Data classes/structs
• Delegating classes
• Worker classes Structs also exist in C. Delegating classes
can be replaced with structs and functions. The only thing
that requires further consideration is how to replace worker
classes. They use private variables to store intermediate
results. These intermediate results have to be passed on as
function arguments instead. Then you can replace worker
classes also with structs and functions.

As you may have noticed, I am not a big fan of OO programming.
I’ve just seen too much bad OO code. And there is no need to do
OO programming. The only thing I don’t know how to replace

23. Programming Paradigms 242

in procedural code are classes doing memory management in the
constructor and destructor. It seems like this was managed in pure
C as well, but I can’t go further into details.

It takes some adaptation to get used to procedural programming,
but it certainly has its advantages and is worth the effort.

As a summary, I can say: yes, it is obviously possible to write good
code in C. Otherwise the Linux Kernel would have been wirtten in
an OO programming language to begin with.

Functional Programming

The main difference between functional programming and proce-
dural programming is the absence of non-constant variables. In
functional programming, data structures cannot be changed once
initialized. This restriction imposes significant limitations on the
programmer, making programming more challenging. On the
other hand, it also has its advantages. You don’t have to pay
attention to things like output arguments. Functions do not have
side effects. Functions cₐn’t have side effects. The only thing that
changes is the return value. Furthermore, the return value of the
functions depends only on its arguments. These are called pure
functions.

Having only pure functions has several advantages. First of all,
it is generally recommended to use only pure functions wherever
possible. Also in OO programming. Pure functions are much easier
to deal with than functions that depend on some kind of state. They
are also much easier to test. You will never have the issue of not
knowing how to test a pure function. Call the function with various
arguments and verify that the return value is accurate. It won’t get
any easier than that.

Due to the nature of pure functions, functional code is generally
easier to understand than, say, OO code. This is because functional

23. Programming Paradigms 243

programming relies solely on states that are always explicit and
easy to comprehend.

One drawback of functional programming is that it does not
support the use of for loops since they require a non-constant
counter. Instead, you have to use recursion, which can be a little
tedious at times. Furthermore, it requires you to use a programming
language that supports tail call optimization. This technique allows
the compiler to optimize recursion into a loop. Without tail call
optimization, recursion can be very slow and may even lead to a
stack overflow.

In many programming languages, you can emulate functional
programming to some extent by utilizing only pure functions. And
I highly recommend doing so because you will be left with only
pure functions, making testing very easy. Using only functional
programming, however, is, in my opinion, not worth it. It is overly
restrictive and makes programming needlessly challenging. At
least somewhere in your code you need to have some effect, like
writing data to a file. Otherwise your program will not do much.
This is where functional programming reaches its limits.

Conclusions

All different programming paradigms have their advantages and
drawbacks. Statements like “You have to use OO programming
because it mimics the real world” are certainly outdated. It is best
to be acquainted with various paradigms to enhance flexibility and
adapt your style to current needs. The times when you were only
supposed to write procedural or OO code are over. If you are
flexible and understand the advantages and drawbacks of different
programming paradigms, you can write better code.

I would generally recommend staying at the lowest programming
level (functional programming) for as long as possible. Only switch

23. Programming Paradigms 244

to higher levels (procedural or even OO programming) if the task
would otherwise become too complicated to understand.

Copilot

Here is an example where Copilot went haywire. I wanted to create
code like a = [i for i in range(10)], but somehow this didn’t
work out. The output is certainly incorrect.

1 a = []

2 for i in range(10):

3 a.append(i)

4

5 #rewrite the code above using functional programming para\

6 digm

7

8 // Path: code_examples/softare_paradigms.py

9 a = []

10 for i in range(10):

11 if i % 2 == 0:

12 a.append(i)

When explicitly asking for a list comprehension, it works out.

1 # rewrite the code above using list comprehension

2 a = [i for i in range(10)]

// General comment about copilot: Don’t use comment based code
generation. // Write the core logic by yourself. Copilot can’t help
you there. // [https://youtu.be/RDd71IUIgpg]

24. Programming
Languages

“I think I’m a much better programmer now than I used to be, even
though I know less about the details in each programming language
I work in.” – Michael Feathers [WELC, p.311]

A very common question among beginners is: “Which program-
ming language should I learn?”. Some may have read somewhere
that programming language A is better than language B for some
very obscure reason. The very simple answer is: It doesn’t
matter too much. Most OO languages are similar enough, and the
differences in programming philosophies are fairly small. Small
enough to understand the programming examples in this book, I
hope.

For example, many of the low-level C++ features can be encap-
sulated within a higher-level object, giving the appearance of an
intermediate-level language. Though it’s still not quite at the same
level of sophistication as Python.

I really want to emphasize that you shouldn’t delve too deeply into
learning a programming language. Reading a small book about
the language you want to use is certainly a good start. A small
book, not a big one. The rest you can search on the internet as
you need some specific syntax along the way. Google and Stack
Overflow are more helpful than relying on your vague three-year-
old memory, and AI code generation is also becoming a valuable
resource. It is much more important that you learn how to program
in general. To understand the general concepts. The concepts are
easier to understand and more powerful than some syntax. Syntax
can easily be looked up, whereas concepts must be understood.

24. Programming Languages 246

But as you asked about a programming language, I would like
to briefly share my perspective. Although it is highly biased. I
know mainly C++ and Python, and a little bit about Java and
JavaScript from the programming books I have read. If you work in
a field where a specific programming language is used, you should
definitely learn that language. Even if it’s just Matlab. You can still
learn another language later on.

As a scientist, I recommend Python as a first programming lan-
guage. JavaScript is a viable alternative for web development.
Both are scripting languages that do not require a compiler and are
relatively easy to get started with. Dynamic typing (duck typing)
eliminates the need for inheritance to define an interface. Any
two objects that have the same interface can be interchanged in
the code. And there is no need to learn anything about pointers
or memory allocation as in the past. These things are outdated, as
explained in the chapter [levels of abstraction].

While it has to be said that dynamic typing also has its drawbacks.
Having type information is not only helpful for the compiler but
also for the programmer. Understanding a function’s purpose is
simpler when you are aware of the types of its arguments. For
instance, there are methods to include type hints in Python, but
I often find myself too lazy to add them. If you want to learn
javascript, consider learning typescript instead. I think the type
system is a good thing.

Same for the compiler. It may be useful that the python code
doesn’t have to be compiled after changing a single line of code,
but at the same time a compiler can also give useful insights.

Alltogether I would recommend to learn a language that is statically
typed and has both, a compiler and an interpreter. I don’t know
which language fulfills these requirements.

24. Programming Languages 247

Java and C++

I would not recommend learning “low-level” languages as Java or
C++ as a first programming language, even if I included some C++
code in this book to explain some details. Java and C++ are too
complicated to be learned as introductory languages, and it takes
much more time to understand the languages themselves. The C++
examples throughout this book are only meant to explain low-level
details that you don’t need to worry about in Python. Instead, you
should learn how to apply the higher-level principles taught in this
book to improve your coding skills. Of course, later in your career,
it makes sense to learnmanymore languages. Java and C++ are still
among the most widely used programming languages. Not because
these languages are superior to more modern languages, but simply
due to the abundance of old projects.

C++ and Java are both statically typed. They have to be compiled
and use inheritance to define interfaces. And you have to deal with
pointers. Learning new languages will expose you to alternative
ways of approaching problems. Switching from Python to C++
will require you to learn many fundamental aspects of software
development. It also opens up more job opportunities. But
it’s nothing worth bothering with when you are a programming
novice.

Existing Programming Languages

Programming languages and APIs share a common destiny. Cre-
ating a new programming language that is clearly superior to an
existing one would be easy. Someone said that removing the
C++ template specialization of std::vector would lead to a better
programming language. This specialization optimizes and treats
std::vector as a bitwise array, which can be cumbersome to work

24. Programming Languages 248

with. And he is certainly right. But there are millions of software
projects that already use the current languages and depend on the
current functionality. Their code is worth billions. You should not
update large amounts of code just because of a minor issue in the
programming language. Instead, there are thousands of developers
making suggestions on how current programming languages could
be improvedwithout breaking compatibility. A team of experts will
debate all kinds of possible issues before a new feature or internal
change is accepted into the standard of a programming language.

For example, in C++, there is the Boost library. Pretty much
everyone programming in C++ knows it. It is one of the most
commonly used third-party libraries and is known for its high-
quality standards. The Boost library contains hundreds of very
important sub-libraries that are not part of the C++ standard
library. Usually, new features are first implemented and tested as a
Boost library. Only after a new feature has been used and tested by
the community for a few years, it might be accepted into the C++
standard library. This is how smart pointers and the filesystem
library were incorporated into the standard. It is important to
note that these are all extensions of the programming language,
not changes. They don’t break any existing code.

Code Examples

There are quite a few code examples in this book. Most concepts
that I explain here can be illustrated with real-world examples. The
syntax I used is kept as simple as possible because I want to focus
on teaching you concepts, not syntax. I tried to make this book
as language-agnostic as possible. The code examples are mostly
written in Python and occasionally in C++ if necessary to explain
some low-level features. It’s not a deliberate choice to use Python
and C++; those are just the programming languages that I know.
I’ll try to explain the examples so that you can roughly understand

24. Programming Languages 249

them, even if you don’t know the corresponding programming
language that well. I promise that the syntax will be very simple
to understand. It requires only a fundamental knowledge of the
relevant programming language.

Python

Even though Python is a fairly easy programming language to
learn, there are some language-specific concepts that are worth
learning. For more advanced topics, there is the Google Style Guide
[https://google.github.io/styleguide/pyguide.html].

Type hints

[https://youtu.be/dgBCEB2jVU0]

Python is dynamically typed. At first sight, this seems like a great
thing. A function can be called with many different argument
types, so you don’t have to specify them. As long as the argument
supports the required functions called. But it also comes with
its drawbacks. Types are an important part of the information
regarding arguments and return values. With types, you know
what kind of operations you are allowed to perform, or what the
expected outcome of an operation will be. For example, the +

operator behaves differently with floats than with strings. So, at
times, it would be useful to know the type of a variable.

While it is not possible to enforce types in Python, and according
to Guido van Rossum, it will never be as it is not Pythonic, it is
possible to write type hints. A simple : str following a function
argument indicates that it should be a string. Though type hints
have the problem that they are not enforcing the types. You can
still pass a different type and python will accept it.

Here is an example using type hints:

24. Programming Languages 250

1 def digits_of(number: str) -> list[int]:

2 return [int(d) for d in number]

But, as I mentioned, this does not enforce that the argument of
digits_of is a string. You could also pass a list of floats instead
and get a perfectly valid result. It’s just that this was apparently
not intended by the author of the code.

I generally recommend using type hints as theymake the codemore
readable. Even if I’m sometimes too lazy to do it myself. And even
if it moves the syntax much closer to C++. C++ is not such a bad
programming language after all. It’s just a little bit old-fashioned.

Typing would be the first reason why I recommend against using
Python. The lack of a compiler is the second one. And the fact that
python is sometimes too dynamic, as shown below, is the third one.

Slots

[https://youtu.be/Fot3_9eDmOs]

Python is a very dynamic language. It allows you to do things that
wouldn’t be possible in other languages. For instance, you may add
fields to a predefined class like this:

1 class Apple:

2 def __init__(self, price: float, weight: float):

3 self.price = price

4 self.weight = weight

5

6 apple = Apple(price=1.0, weight=0.5)

7 apple.hi = "hi"

Adding the member variable hi to an existing class instance
wouldn’t be possible in almost any other language. And this for
good reasons. It might seem tempting to add a new variable at

24. Programming Languages 251

any point in time. But it’s generally not good coding practice
to do such things. For example, you could accidentally misspell
apple.pice = 2.50 and Python doesn’t complain. Instead, it
creates a new member variable pice and assigns it a value of 2.50.

This issue can be prevented by using slots.

1 class Apple:

2 __slots__ = "price", "weight"

3

4 def __init__(self, price: float, weight: float):

5 self.price = price

6 self.weight = weight

Slots fix the available member variables. In this case, only the
variables price and weight are allowed. (Accidentally) adding
other member variables to the Apple class is no longer possible.

Abstract Base Classes and Protocols

Defining base classes as an interface is not required in Python.
However, I still recommend using Abstract Base Classes (ABC) if
there is more than one class implementing an interface. Although
it is not required in Python. Defining the structure of the interface
you are going to use and implement makes the code slightly more
readable. And it also prevents you from making mistakes that
might be difficult to track down.

An alternative to ABCs are Protocols, which were introduced
in Python 3.8. Protocols have some advantages when working
with type hints, although they are mostly equivalent. This
is a highly advanced topic, I cannot delve into details here.
[https://youtu.be/dryNwWvSd4M]

24. Programming Languages 252

C++

C++ has some peculiarities such as a preprocessor, header files,
pointers, and arrays that make the language unique. Thus, I’d
like to explain some of the differences between C++ and other
programming languages.

C++ was developed by Bjarne Stroustrup and first published in
the 1980s. He enhanced the existing C programming language by
incorporating object-oriented programming principles, along with
othermodifications. So, yes, it is an old language, but it is still in use
and will continue to be with us for several more decades. Thanks
to the constant development of the language, many of the ancient
problems it once brought along have been overcome. At the same
time, C++ is a very good example to learn a lot about programming
languages and how they have evolved. As I used C++ in some of
the examples here, I’m going to explain some of the particularities
of this programming language.

For more information about C++, I can recommend the Google C++
style guide, [https://google.github.io/styleguide/cppguide.html]

Vectors

In C++, people used to work with pointers and arrays. But these
times are long gone. Nowadays, we have vectors, which are a
higher-level version of arrays, as explained in the chapter on levels
of abstraction. There is no longer a need to use arrays in C++. You
don’t even have to learn about them, it would be a waste of time.

Some libraries require the use of plain old arrays instead of vectors.
This, however, is not a reason to use arrays throughout your code.
Instead, you can use vectors as usual and convert them to arrays
using the data() and size() functions as needed.

24. Programming Languages 253

1 std::vector<int> v {1,2,3,4};

2 some_old_C_style_library(v.data(), v.size());

This approach allows you to work with vectors for as long as
possible and only convert them at the very end.

Smart pointers

Smart pointers, std::unique_ptr, std::shared_ptr, and
std::weak_ptr, are replacements for plain old pointers. Smart
pointers are a higher-level implementation. It has built-in features
like reference counting, and they automatically know when to go
out of scope. There are still some things to know, such as weak
pointers, but these are mostly details that you don’t have to worry
about in the beginning.

There are libraries that require plain old pointers as function
arguments. There is no reason to use plain old pointers throughout
all your code. Instead, you can convert the smart pointer into a raw
pointer using the get() function.

1 auto foo = std::make_unique<Foo>();

2 some_old_C_style_library(foo.get());

This prevents you from having to deal with old-school pointers
until the very end where you call the other API.

Pass by Reference

In order for an object to bemutable, it can be passed by pointer or by
reference. Passing by pointer is outdated. Objects should always be
passed by reference. Passing an object by reference means that you
essentially pass the object itself, allowing it to be modified. If the
object is passed by const reference, it cannot be modified. Passing

24. Programming Languages 254

by const reference is done very frequently. Passing an object by
value creates a copy of the object and requires a significant amount
of memory.

At the same time, this is also one point for criticism as passing
by const reference should have been the default. The compiler
won’t complain if you forget to use const, even though you should
have used it. It would be much safer to use the programming
language if constwere the default property, and you had to specify
an argument as non_const. This would cause a compiler error if
you changed the corresponding variable. This is done in Rust, one
of the more modern programming languages.

Classes

C++ was one of the first mainstream programming languages
to support classes, inheritance, and more. Probably, it
became so widespread because most things worked out
pretty well, except for some details about multiple inheritance
[https://www.geeksforgeeks.org/multiple-inheritance-in-c/]. But
as I advised you not to use inheritance, you don’t have to worry
about such details.

There is one thing, however, that was done better in other lan-
guages, such as Java. In Java, defining an interface is actually called
this way, while in C++ or Python one must define an “abstract base
class” (although in Python it is not necessary to use them). Interface
inheritance is the only type of inheritance that I recommend using.
Remember when I say you shouldn’t use inheritance: the entire
concept of abstract base classes should be named differently and is
not impacted by this rule. It is fine to use inheritance with abstract
base classes or interfaces.

24. Programming Languages 255

Structs

Structs are essentially the same as dataclasses in Python [chapter
classes]. These are classes where all members are public. In general,
structs are used to store various data types, although theoretically,
structs may also include functions. The latter is only forbidden by
general agreement.

Structs are generally very useful data structures, as explained in the
section on classes. It’s a pity that struct-like objects are barely used
in Java and some other languages. In Java, a struct can be defined as
a normal class containing only variables without any getter or setter
functions. Since Java 14, one can use a record, which is similar to
a struct.

Copilot

Copilot can be used to translate between different programming
languages. Here is a very simple example to demonstrate the
capabilities of Copilot. Though I am unsure of how well Copilot
can translate complex code snippets.

1 #include <iostream>

2

3 for (int i = 0; i < 10; i++) {

4 std::cout << i << std::endl;

5 }

1 for i in range(10):

2 print(i)

25. Physical Laws of Code
// break up this chapter merge it with other?

“You should always bear in mind that entropy is not on your side.”
- Elon Musk

Entropy

Entropy is the physical law of disorder. The second law of
thermodynamics states that entropy will always increase. Fighting
entropy is a challenging task. It is like cleaning up your room every
week. If you don’t clean your room, it will become dirty, and you
won’t be able to find your stuff anymore.

In software engineering, we have a very similar phenomenon, and
it has very severe consequences. As we write code, more disorder
is created. On the one hand, this is very natural as a growing code
base automatically attracts more disorder. There is simply more
stuff around that you have to take care of. On the other hand, this
disorder is also man-made. The entropy only grows significantly
if you allow it to. You have to fight entropy in your code the same
way you fight entropy in your bedroom. You have to clean up
regularly. You have to sort all your belongings. You have to throw
away things that you don’t really need or that are duplicated. This
will take time and effort. But such is life. You don’t get a well-paid
job in IT without doing the dirty work as well. What you have to
do is explained in the chapter on refactoring.

25. Physical Laws of Code 257

Correlation

Similar things belong together. It may sound trivial, but it is
extremely helpful when designing code. And it’s true for pretty
much any aspect in programming. Not only code objects, but also
abstract concepts.

There is a market for food, and further down the road, there is
a store selling electronics. Each type of store is located in its
designated area. If you find a market store selling apples, chances
are high that the next store sells apples as well. It is normal for
similar things to align together. This makes them easier to find.

The same holds true for code. Functions are bundled together based
on their functionality, just like classes. This makes them easier to
find when searching for specific functionality. At the same time,
they should also have the same level of abstraction. The main
function, for example, consists of only a few high-level function
calls. Avoid any stringmanipulations or other low-level operations.
These low-level functions are buried deep within a lower level of
abstraction.

Bugs also tend to cluster inside your code. Did you find a bug
in a very complex part of the code? Chances are you will find
more bugs in the same area of the code. Probably it’s some kind
of complex algorithm or the implementation of a little-understood
requirement.

Once you start thinking about this rule, you will automatically
structure your code in a much better way. It becomes much tidier.
It will feel more natural and won’t require too much effort to
improve. By checking the complex parts of the code earlier on,
you will be able to find your bugs faster.

25. Physical Laws of Code 258

Quality

There were studies on what must happen for an area to start de-
caying [The pragmatic programmer]. They came to the remarkable
conclusion that one broken window is a sufficient signal for other
people to start breaking windows as well. In no time, the whole
area looks ruined and abandoned.

Accordingly, when writing code, it is crucial to maintain high
quality. Don’t write poor code, or it will feel neglected too. Some
individuals may become careless when they feel that maintaining
code quality is not worthwhile, leading them to write poor code.

On the other end of the quality spectrum, you have the issue
that some developers persist in writing and improving their code
indefinitely. This is, of course, also an issue. There is always
something that you feel could be improved. But at some point,
you have to come to the conclusion that your code is good enough
[The pragmatic programmer].

These two things, broken windows and good enough code, are
another example of opposing principles. It is your task to find
the right balance between them, as it is in many things I teach
throughout this book.

Over Engineering

[https://youtu.be/FLe5dvqV6xs]

Software Engineering is a constant trade-off between speed and
quality. There is always something that you can improve, but on
the other hand, your customers would like to have the product as
soon as possible. You have to find the right balance between these
two extremes. Fix what has to be fixed, and leave the code as is
where you won’t improve it significantly.

25. Physical Laws of Code 259

In my opinion it’s always worth having a good test coverage with
unit and functional tests. You anyway write your tests before the
code, don’t you? Working without tests is dreadful. You’ll live in
constant fear because you don’t know if your changes will break
anything. Furthermore, unit tests force you to wirte good code.
They force you to structure your classes and functions in a way
that they can be tested. This is usually the quality of code that you
need. And it gives you a certain standard that you can adhere to.

On the other hand, you can spend days searching for the perfect
variable names. You’ll never find them. The software works
without it and could be shipped instead. If you have proper test
coverage, you can still improve your code later on.

It is important that you are fast at writing code. Because being
fast gives you more feedback. Therefore, it is important that you
eliminate things like extensively searching for variable names or
hours long code reviews. Because it slows you down and the costs
are higher than if you are able to just move on and possibly fix the
code later on if needed.

Whether something is over engineering or not is also a question
of what stage in the project you are. In the beginning of a large
project, you certainly have to invest more time into planning
your code. Making mistakes there can be really costly afterwards.
Meanwhile towards the end of a project, you don’t have to be that
strict anymore. You should still write tests and make sure you
don’t introduce bugs, but you don’t have to be as strict as in the
beginning.

Another thing you should avoid is future profing. YAGNI: You
Ain’t Gonna Need It. It happens more often than not that you write
code that you think you will need in the future. But you never do.
And then you have to maintain this code for the rest of your life.
This is a huge waste of time. Make sure that you write your code to
the best of your knowledge now and cover it with tests. Then you
can still improve it later on if needed. Only the architect is allowed

25. Physical Laws of Code 260

to make some decisions that may affect your code in the future.

26. Bugs, Errors,
Exceptions

“One in a million is always next Tuesday.” - Gordon Letwin

Even if you write absolutely pristine code, some things will still go
wrong. Some of these things are not a problem at all, while others
can be extremely dangerous. Literally. Problems are less critical if
you find them early on and they are immediately recognizable. If
your compiler finds an error, the costs are barely worthmentioning.
Triage the source of it and fix it. However, if your software is
already in production, the costs are significant.

I would like to briefly go through the different cases.

Syntax Errors

Syntax errors happen to anyone, even the most experienced pro-
grammers. It’s normal and not a problem at all. You are not even
able to run the code in its current state. Enhance your skills and
deepen your understanding of the programming language you are
using. Syntax errors are the best example of how problems do not
cause any harm if they are caught early on. In compiled languages,
the compiler will find the syntax errors, while in Python, the parser
checks the correctness of the syntax at least to some degree. Either
way, you’ll receive an error message immediately.

At the beginning of our programming careers, we were all bothered
by compiler errors (back in the days when I was programming
in C++). We were happy once there were no more errors. Our
programming skills were insufficient to realize that the compiler

26. Bugs, Errors, Exceptions 262

was assisting us in writing a functional program. It is a good thing
we encountered compiler errors because theymight have prevented
us from creating serious bugs that could have been difficult to find
later on. Nonetheless, we still created many such bugs.

Bugs

Many people underestimate the issue of bugs. They are easy to
ignore because they don’t show up too often, and perhaps they are
not too severe. There are just some glitches. But this is exactly
why bugs are so catastrophic. You don’t necessarily know when
something went wrong. You might have a sense that something
is amiss, but you are not certain. Or you don’t know at all. This
is the worst-case scenario that can occur in your code. You may
think everything is alright, but in fact, it is not. Your hard disk
was deleted, a bank lost dozens of million dollars, or an airplane
crashed. Everything is possible, and it has all already happened.
Bugs are the worst possible issue that can occur in your code. Sure,
most bugs are not that terrible. But don’t take them lightly.

Cost of Bugs

The cost of bugs can be enormous. It may take hours, if not days,
to track down a bug. And in bad code, it’s frequently unclear
how it should be fixed. Furthermore, the cost of bugs increases
exponentially over time. This is due to the growth and increased
complexity of the code [SE at google, p.207]. This is why syntax
errors are so cheap: you are forced to fix them immediately.
However, you should not let the bugs linger around. The longer
you wait, the more expensive it becomes. In a shipped product,
a bug may cost millions, while fixing it in the development phase
may only cost a few hundred dollars.

26. Bugs, Errors, Exceptions 263

I hope you got the memo. You always have to make sure you don’t
create bugs. Write good code and ensure it is well covered by tests.
This is the only way to keep the number of bugs low (although it
will never reach 0) and to stay as far away as possible from the
exponential growth of the costs they cause.

Is it a bug or a feature?

In theory, it’s very simple. Either some behavior is documented, or
it’s a bug. But in practice, it’s not always that simple. First of all,
not all behavior is documented. And secondly, not all undesired
behavior is a bug, or at least it is not always advisable to fix it. The
users of your software may have become accustomed to the faulty
behavior and have implemented a workaround. So, fixing the bug
could actually introduce new bugs in your clients’ code.

Bugs can be classified by their severity. A bug resulting in a crash
of an airplane is one of the worst-case scenarios and must be fixed,
regardless of how unlikely it is to occur. Meanwhile, if you are
developing an Android game, a bug that causes the game to crash
every one thousand hours or so may be considered acceptable. The
potential inconvenience caused by the user may not justify the
effort required to fix the bug. It is very common that only critical
bugs are fixed. All other bugs may be documented along with a
workaround, but they will not be fixed due to economic reasons. In
safety-critical systems, such as airplanes, all identified bugs must
be resolved.

Bug Reports

Depending on the software, writing good bug reports may range
from straightforward to nearly impossible.

Good bug reports explain the problem clearly and unambiguously.
They follow a simple pattern: “If you do A, then B happens, but it

26. Bugs, Errors, Exceptions 264

would be expected that C happens.” Unfortunately, describing A
may be very difficult, depending on the software. If your software
has an API that can be used to trigger the bug, you are usually in a
good position because it is very simple to reproduce the bug. Just
hand over all the relevant files.

If it is a game (that doesn’t have an API, of course) that crashes
under very specific circumstances, it may be extremely difficult to
reproduce the bug. Maybe some log files may help, but even that
is not always sufficient to track down the bug.

Writing good bug reports is challenging. A bug report should
be written with scientific accuracy so that anyone can reproduce
the bug. Any factors that could potentially cause the bug must
be reported, such as the software version number and even the
version numbers of third-party libraries. Themore information you
provide, the easier it is to track down the bug.

Tracking down bugs

Debugging is the process of finding and resolving bugs. If you
spend too much time debugging, it’s a clear indication that your
code quality is poor. You don’t know what you are doing, and you
lack tests. Even with good code quality, some bugs are inevitable.
But at least it is usually fairly obvious where they are trying to hide
because they also have to follow the logic of your code.

For debugging, you have the debugger to help you out. It allows
you to set breakpoints and inspect variables. So far, so good. But
if you find yourself using the debugger frequently, it may indicate
poor code quality. If you had structured your code better and had
higher test coverage from the beginning, you probably wouldn’t
need to rely on a debugger. Using a debugger is a clear indication
that you lack understanding of the task at hand. Meanwhile,
this may happen occasionally. You should ensure that using the
debugger is the exception rather than the rule and reconsider the

26. Bugs, Errors, Exceptions 265

way you write your code.

There are many different ways to track down bugs. Most impor-
tantly, you need to have an idea of which part of the code may have
caused the bug under investigation. If you have a code example
using the API of your software, you can attempt to simplify it while
checking whether the bug still exists. This usually gives you a good
idea of what the bug depends on. In most cases, the bug depends
only on one specific setting in your API file. For example, the user
may have used an option that is rarely utilized, and you anticipate
it being buggy for some reason. Once you have minimized the
number of API calls, there are two ways to track down the bug:

1. You can set a breakpoint where the value of a variable is
assigned. If you have already reduced the code from the
bug report to the smallest possible case, you should not need
to iterate over the breakpoint too frequently to identify the
faulty behavior.

2. You can bisect the bug. You set a breakpoint somewhere in
the middle of the code to check if the bug already exists. If
it does, you bisect the first half of the code; otherwise, you
bisect the second half of the code. This is a very powerful
technique as you can track down the bug in log(n) steps.

Now, as I already mentioned, the most important thing is to have
as much information about the bug as possible. You need to have
a clear idea of which part of the code may have caused the bug. If
your code is badly structured and you have no idea whether some
value returned by the debugger is correct or not, you will have a
very hard time debugging it. You’ll have no choice but to guess.
Guessing is an extremely tedious process.

Unfortunately, some bugs are very challenging to track down.
These are the bugs that are not reproducible, for example, in a
distributed system where a race condition1 may occur once in a

1https://en.wikipedia.org/wiki/Race_condition

https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Race_condition

26. Bugs, Errors, Exceptions 266

while. Utilizing log files may help. However, in complex cases, it
takes an enormous amount of time to track down the bug.

Fixing a bug

As mentioned earlier, you should never immediately fix a bug
that you have just discovered. Users may rely on this faulty
behavior, and fixing the bug may interfere with their workarounds.
Consistency may be more important than correctness. Fixing the
bug may break user code!

Once you have a bug ticket, the first thing to do is to write an
automated test using the minimal API code that causes the faulty
behavior. This helps a lot in tracking down the bug and prevents
future changes to the code from reintroducing the bug. Bugs that
have appeared once are very likely to reappear in the future.

Next, you have to track down the source of the bug, as mentioned
above. Once you have found the bug, you can start fixing it.
However, there are still some things to be considered. It is not
advisable to simply insert a random hack into the code to solve
the issue. You need to identify the faulty logic in your code! This is
the only place where a bug can truly be fixed permanently. When
looking at the code, you should have no idea that this is a bug fix
applied later on. It should integrate into the code seamlessly, as if
it had always been there.

Copilot

The copilot can identify certain bugs. Though I expect it to find
only minor bugs, this is already a significant achievement. For
example, consider the following code snippet.

26. Bugs, Errors, Exceptions 267

1 roman_map = {1: 'I', 4: 'IV', 5: 'V', 9: 'IX', 10: 'X'}

2 roman = ''

3 for key in sorted(roman_map.keys(), reverse=True):

4 while number > key:

5 roman += roman_map[key]

6 number -= key

7 return roman

I introduced a bug as the code should be while number >= key:.
The bug was found by Copilot Labs’ bug-fixing function. Highlight
all the code shown here and click on “fix bug”. Though, as with
text suggestions by Copilot, there is a question about the level of
difficulty of problems it can solve. The text suggestions are usually
straightforward, as are the code suggestions and likely the bug fixes
as well.

Exceptions

Exceptions occur when the software is expected to perform a
certain task but is unable to do so. Some examples include writing
files when there is insufficient disk space or encountering a division
by zero. Though, some programming languages can return infinity.
Exceptions may occur once in a while. Mostly input/output (IO), if
a connection cannot be established, the hard disk is full, divisions
by zero, or logical errors in your code. Yet, these cases need to be
taken care of. The user must be notified to fix the problem.

User input should always be validated immediately. Are all values
correct? When writing and supporting your own code, this is not a
big deal, but users need human-readable feedback. A “division by
0” error message is not helpful because there may be no input value
of 0. It could be the result of a lengthy calculation. The user should
knowwhich combination of variables caused this exception. Check
the sensitive values and provide a meaningful response. “Invalid

26. Bugs, Errors, Exceptions 268

input: the number of ‘shopping_items’ cannot be 0”, making it
much easier to track down the source of the problem. Check the
values that are sensitive and promptly return an appropriate error
message. If there is an invalid state, you should throw an exception
as early as possible. Check if there is enough disk space before you
start writing a file. Check if a division by zero can occur before you
start your calculation. And return a meaningful error message.

Wrapping exceptions

You don’t want exceptions to escape your code. This code will
cause the software to crash when executed. It is not a significant
issue for a small standalone project, as it should probably be
terminated anyway. But in serious software development, you
cannot allow this to happen. Your software must be able to recover
from an exception. It is recommended to define your own error
types. Put a try-except block around the entire code to handle all
custom exceptions. Custom exceptions indicate that the user made
an error, and you anticipated this incorrect behavior. You should
provide the user with a meaningful error message explaining why
the exception occurred and what they should do to resolve it.

Add another except block at the end of the program to catch any
other types of exceptions. These are errors you didn’t anticipate.
Bugs. Write a different error message and kindly instruct the user
to contact your support team. The cause of this error message is a
logical issue in your code. Write an error message to contact your
customer support in order to fix the code. This error message was
caused by a coding error and needs to be fixed.

Raise exceptions immediately if the program enters an invalid state
and provide a clear error message to the user explaining what went
wrong. It is not worth trying to deal with a semi-invalid state (also
known as walking wounded). You will not be able to rectify the
situation. Exceptions originating not from faulty user input should
result in a message explaining the cause of the issue.

26. Bugs, Errors, Exceptions 269

As stated in C++ Core Guideline E.31, “Properly order your catch
clauses”[](C++ Core Guidelines explained). Meaning that you
should always catch specific exceptions first and then more general
ones. This is because specific exceptions allow you to provide the
user with more detailed information about the problem, enabling
them to resolve it without requiring your assistance. General
exceptions indicate that the problem was unexpected, and the
customer is not expected to resolve it by himself.

The try-catch block around the main function should ensure that
no exceptions propagate out of the program. Following the above
rule, it should look something like this:

1 if __name__ == "__main__":

2 try:

3 main()

4 except CustomException as e:

5 print("Unable to process user input:")

6 print(str(e)) # for example: "InvalidInput: lengt\

7 h of

8 # 'shopping_items' cannot be 0"

9 except Exception as e:

10 print("Unknown issue. Please contact our customer\

11 support.")

12 print(str(e)) # for example: "ZeroDivisionError:

13 # division by zero"

Try-except blocks have some similarities to if-else or switch-case
blocks. They are susceptible to bad code, especially violating the
SRP. Therefore, apply the same rule to try-except blocks as to if-
else blocks. There should be very few lines of code within each
case, typically a function call or a straightforward error message.
Furthermore, try-except blocks should be the only content within
a function. The sole responsibility of this function is to manage the
try-catch block.

26. Bugs, Errors, Exceptions 270

One common pattern is catching and re-raising exceptions. This
allows you to add additional information, depending on the type of
exception. This is not worth the effort. This additional information
is not particularly helpful to the user. Instead, you should define a
custom exception type and print a corresponding message when
catching it. With all the information you have at the time when
the exception was thrown.

Make sure your unit tests also verify the handling of exceptions.
Exceptions are an integral part of the code specification. In some
cases, it is impossible to write a unit test. For example, you should
never read a file in a unit test. Instead, you should dependency
inject a file object throwing an exception. We delve into more
details in the section on dependency injection. [](chapter Writing
Better Code with Tests)

Exceptions and Goto

By the way, you might have heard of the goto statement that was
widely used until the 1970s. Then Edsger Dijkstra wrote the famous
paper “Go to Statement Considered Harmful” 2 which basically
ended the usage of the goto statement. As always, there was a
lot of truth behind his argument, but there are cases where goto
statements are a legitimate choice. The Linux kernel is written
in C, which does not support exceptions. Therefore, the Linux
kernel uses goto statements instead. The goto is called when an
error occurs and redirects the code to the equivalent of a catch
block. Thus, goto statements are not always that bad. But you can
certainly write terrible spaghetti code if you abuse goto statements.

2https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

27. Complexity
“I choose a lazy person to do a hard job. Because a lazy person will
find an easy way to do it.” – Bill Gates

Complexity of Code

As we write software, we have to deal with two different com-
plexities. The complexity of the problem we want to solve and
the complexity of your code. As the code encompasses all the
features of the real problem, the complexity of the code will always
be at least as high as the complexity of the actual problem. This
becomes apparent when one product manager generates an exces-
sive amount of work for several programmers. The complexity of
implementing a feature is much higher than its actual complexity.

The goal of writing software is to minimize complexity as much as
possible. Close to the complexity of the real problem. If possible, it
should be equivalent to the actual problem. The code should repli-
cate the real problem one-to-one. Unfortunately, this will never
happen. There is always some overhead when programming. Not
only boilerplate code but also conceptual overhead. How should
youmap a real problem one-to-one into code? How should an apple
ever become code? The answer is: it depends on your requirements.
This is where object-oriented programming originated. It claimed
to be the natural representation of things. Because you could create
a class called Apple, and this would solve all our problems. But it
did not. We still don’t know how this apple should interact with
all other objects in our code. We don’t even know how this apple
class should really look like!

I cannot deny that OO programming makes some things easier, and

27. Complexity 272

having an Apple class is a good start. But it doesn’t explain all
the logic behind it. You have to figure it out yourself. You have
to try to explain what the apple really does. Maybe even write it
down. Engage in conversations with others, including experts. It
takes time to build up knowledge of what is important and how
everything is connected. This is a fundamental requirement for
writing high-quality code with minimal complexity. And always
remember: an apple only needs the properties for your current
purpose. Inside a cooking recipe, you don’t care about the price
of an apple, nor do you in your code!

As a next step, you have to figure out how to convert all this
knowledge into code. Explore various ways to connect all the
objects involved. Change the order of statements and the way data
is passed between the objects. When done correctly, you will end
up with code that closely resembles the explanation provided by
domain experts. The objects have the same properties, the func-
tions perform the same tasks, and you use the same names. Your
code seems to directly map to the real problem. Eric Evans referred
to this as a Domain Model[](Domain-driven design). Handle it
with care. The domain model is very valuable, and you can easily
compromise it by incorporating code that does not align with the
model.

Having a domain model is a valuable asset. It forces you to
understand the problem thoroughly and write the core of your code
first. At the same time, it prevents you from getting lost in low-level
details.

Estimating complexity

Estimating the complexity of a task is extremely difficult. Not only
due to technical considerations but also because of pressure from
management. Frequently, the process of estimating a feature is as
follows:

27. Complexity 273

Project Manager: “Can you providemewith an estimate of the time
required to develop feature xyz?”

Programmer: “One month.”

Project Manager: “That’s far too long! We’ve only got one week.”

Programmer: “I need at least three.”

Project Manager: “I can give you two at most.”

Programmer: “Deal!”

[https://github.com/97-things/97-things-every-programmer-
should-know/tree/master/en/thing_50]

Estimating the complexity of a task is typically very challenging.
Some developers might have an idea of what needs to be done,
while others do not. But nobody really knows exactly. And
everyone is a little bit scared of that task. No one knows for certain
how to break the complete problem down into smaller components.
And even if there is still some uncertainty. Estimating the amount
of work remains a very difficult task.

Probably everyone could have come up with a clever solution to
solve the problem, but not with the current code base. Instead,
you have to consider what you really need and which parts are
already implemented in the code. This case is extremely common.
It is possible that everything has already been implemented in
the code, but no one has realized it. When you reimplement the
code, you may end up with redundant code that violates the SRP.
Additionally, time was spent on redeveloping this code.

On the other hand, there are cases where you find a very simple
solution, and implementing the task takes much less time than
expected. Unfortunately, this case is quite rare.

Generally, there are two different methods to estimate the amount
of work required for a certain task. The first approach involves
breaking down the entire topic into smaller components and then
aggregating the efforts of each individual piece. This task requires a

27. Complexity 274

significant amount of expertise, and there is a common tendency to
underestimate the actual workload involved. When breaking down
a task into smaller pieces, many subtasks are often overlooked, or
the overall complexity is usually underestimated by a lot.

The second method to estimate the amount of work is based on
comparing it with similar tasks. This is generally the more accurate
approach, although there is still some uncertainty remaining. It
works best if you engage in repetitive tasks, such as building
a house, or creating a homepage. However, for more unique
problems, such as developing custom software, this approach usu-
ally doesn’t work because there is no previous work available for
comparison. Therefore, estimating the amount of work required
for a certain task is still quite tricky.

Ultimately, it doesn’t really matter how hard you try to get a good
estimation. You will always be underestimating by a factor of
two to four. 1 You could also refer to it as guessing rather than
estimating. The only conclusion is that you should avoid guessing
and simply try to implement the task as well as possible.

Precision and Accuracy

“Saying that pi = 17.630231 is more precise but less accurate than
saying that pi = 3.” - David Farley 2

There are many companies prioritizing precise answers over accu-
rate ones. This is nonsense. The precision should always be as
good as the accuracy. If someone asks you how long it will take,
you should provide an estimate in terms of an order of magnitude:
hours, days, weeks, or months. Only if you have several different
options can you determine which one will take the least time.

1https://youtu.be/v21jg8wb1eU?t=414
2https://youtu.be/v21jg8wb1eU?t=469

https://youtu.be/v21jg8wb1eU?t=414
https://youtu.be/v21jg8wb1eU?t=469

27. Complexity 275

Single line complexity

A common subject of discussion is the level of logic present in a
single line of code. There are very different opinions. On one side,
we have Linus Thorwalds. In the Linux kernel, the maximum line
length used to be 80 characters when using the C programming
language, and the length of indentations is 8 spaces. It is absolutely
impossible to write more than one or maybe two operations on a
single line of code. Try it yourself. It is really worth writing such
code once in a while. You will learn quite a bit about what code
can look like.

On the other end of the spectrum are some Python programmers.
It seems like turning the addition of as much logic as possible into a
single line into a sport. Honestly, I believe this is a rather unhealthy
habit. You don’t gain anything by saving lines of code. At the same
time, every single line becomes increasingly convoluted. Youwon’t
understand it anymore. For this reason, the maximum line length
set by the Google Style Guide is 80 characters. For both Python and
C++. [](https://google.github.io/styleguide/pyguide.html Section
3.2), 3 Additionally there are restrictions on list initialization. For
example, it may not loop over two different variables, as shown in
the following example.

1 [[[0] * (i + j) for i in range(2)] for j in range(3)]

One alternative is to refactor out one of the loops:

1 l = []

2 for j in range(3):

3 l.append([[0] * (i+j) for i in range(2)])

Or we can do it the old way:

3https://google.github.io/styleguide/cppguide.html#Line_Length

https://google.github.io/styleguide/cppguide.html#Line_Length

27. Complexity 276

1 def create_matrix():

2 matrix = []

3 for j in range(3):

4 row = []

5 for i in range(2):

6 row.append([0] * (i + j))

7 matrix.append(row)

8 return matrix

When in doubt, resist the temptation to split up the code and avoid
using single-line initialization. Here I would prefer the second
solution using a list initialization using one variable.

Black magic code

Your code will contain some complexity. There’s no doubt about
it. The only question is how you deal with it. One point is that
you have to be honest. Some programmers try to hide complex
code using all kinds of black magic. This approach may work
occasionally, but the code will be cursed. You can keep working
on the code, but occasionally you see this black magic and you’ll
become petrified. Your only thought will be: “I hope I’ll never have
to touch this.”

It is much better to be honest. The problem has a certain complex-
ity, and we break it down into smaller pieces that we can solve. Do
not hide the complexity; make it apparent.

28. Dependencies
“If you automate a mess, you get an automated mess.” — Rod
Michael

In this chapter, we are discussing files that depend on each other.
An inevitable evil.

The Early Days

In the early days, people wrote code in a single file. This has several
drawbacks. It’s very easy to lose track of the code, and it can be
challenging when you need to replace a part of it. For example, if
you found a faster library. Even worse, the library is only available
as a binary. Then you cannot use it at all.

These are some of the considerations that led programmers to split
their code into multiple files. How do you instruct the computer to
compile the complete code from these files? Apparently, there are
some solutions, but this is an ongoing discussion.

In C++, the problem becomes even more challenging because the
compiler requires the header files. It is possible to compile a C++
program using the command line for a single file, but it becomes
impractical for larger projects. If you use C++, it is inevitable that
you learn a build tool, such as CMake or Meson.

All programming languages have import or include statements at
the beginning of the files. Even with the build tools of C++, you
still need them. They might bother you, but at times they are quite
handy. They are an indicator of some very bad patterns in your
code.

28. Dependencies 278

The dependency graph

If you draw a plot with all the files represented as circles and their
interconnections as arrows, you should obtain a directed acyclic
graph. The trunk of this graph is the file containing the main
function, representing the highest level of abstraction. As youmove
up on the graph, the level of abstraction decreases.

// create a figure of this graph

Now, the first thing to look out for in this abstraction graph is two
arrows pointing in opposite directions. This means that two files
are importing each other. Depending on the language, this may
result in anything from normal behavior to undefined behavior
or errors. But even if it works, it is a very poor design. If you
have mutual dependencies, there is no clear distinction between
the levels of abstraction. It’s just a mess.

The simplest solution is to merge these files. However, this is only
a superficial fix. You really have to determine the relationships
between the functions and classes in the files. Maybe you need to
reorder them, or perhaps you have to rewrite the corresponding
code from scratch.

Breaking up Dependencies

Circular imports are not a common problem because they are easy
to spot, and experienced programmers typically do not encounter
such issues. With good coding habits, circular dependencies won’t
occur. The much more common problem is having too many
dependencies. This makes the code very sticky. It is challenging
to provide specific numbers to quantify the problem because it de-
pends on numerous factors. Breaking up a file is usually beneficial,
but it also leads to an increase in the number of dependencies. This
is inevitable. As a rule of thumb, breaking a file into two is a

28. Dependencies 279

good thing if the number of dependencies increases only a little,
and it should be reconsidered if the number of dependencies almost
doubles. The latter means that most code requires all the code from
this file, so it makes sense to have it all bundled together.

How you break up a file is an even harder question. Sometimes
you can easily group the code into clusters, while other times it is
challenging to discern what belongs together. If you have divided a
class into two classes, you can definitely separate some of the code
into a new file.

The most important step toward reducing dependencies is to focus
on your code. Ensure that similar code fragments are placed in
the same location. Having database access spread throughout the
code is typically a significant red flag. The logic of your code
should be concentrated in a few key areas. Make all the database
requests at once, whenever possible, and store the results in an
instance of a data class. Afterward, you can pass around this class
instance, and there is no need to think about the database anymore.
And just like that, you have eliminated many dependencies while
simultaneously enhancing your code.

The most challenging aspect is reducing dependencies by enhanc-
ing the overall structure of the code. Good code has simple logic,
which in turn has few dependencies. This, however, is quite tricky
to achieve, and even if I could, explaining it here would be barely
possible.

Circular Dependencies

Circular dependencies typically occur when two classes exchange
data between each other. Class A requires data from class B, which
in turn requires some data from class A. You should be able to
determine whether class A or class B corresponds to the higher
level of abstraction. Let’s assume that class A is the higher-level

28. Dependencies 280

class calling class B at some point. Now, Class B should never have
to call class A. B is at a lower level and knows nothing about the
high-level class A. This leads to only one solution: class A has to
call class B exactly once and hand over all the data that class B
needs to return the final result.

Long story short: The high-level object calls the low-level object
and passes all the necessary data at once. The low-level object
returns the final result at the end of the calculation. This resolves
the problem of circular dependencies and organizes the levels of
abstraction. The only tricky part is that the high-level object does
not know exactly what the low-level object needs.

Example

This example is intentionally simple. I hope no one would write
code like this. It’s just to make a point. Here we have a circular
dependency between the functions a and b. Apparently, this makes
the code much more convoluted and harder to understand than
necessary.

1 def a(counter):

2 if counter > 0:

3 b(counter -1)

4

5 def b(counter):

6 print(counter)

7 a(counter)

8

9 a(5)

Now, the first thing to note is that there is no clear level of
abstraction. a calls b and b calls a. They are somehow both on
the same level of abstraction. This is bad. We could simplify it by
inserting the definition of b into the function call inside a.

28. Dependencies 281

1 def a(counter):

2 if counter > 0:

3 print(counter-1)

4 a(counter-1)

5

6 a(5)

This is already much simpler. Of course it could be simplified even
further by removing the recursion all together. But this is only a
side remark.

1 def a(counter):

2 for i in range(counter-1, 0):

3 print(i)

As a summary, one can say that circular dependencies should be
avoided altogether. This task is usually not too difficult if you
use proper levels of abstraction, and it significantly enhances the
readability of the code. Even a single recursive call can often be
refactored to improve code readability.

29. Decoupling
“Before software should be reusable, it should be usable.” — Ralph
Johnson

[](Refactoring, Martin Fowler), [](The Pragmatic Programmer)

Coupling is a crucial aspect of software engineering. Without
coupling, it would not be possible to write code. Coupling is
the glue that holds everything together. But too much glue is
bad because everything becomes sticky. In bad code, everything
depends on each other. Every module or file imports dozens of
other files. This is a significant issue because if you want to change
one file, you might have to change a dozen others. Ensure that the
coupling is minimized. This keeps the code soft and flexible. It is
the ultimate goal to have completely decoupled code. This makes
it easy to work with. It makes it reusable.

This is one of the reasons why global variables and inheritance are
not recommended. Global variables are detrimental as they tightly
couple the entire codebase. It’s worse than importing something
everywhere. All your code dependencies start intertwining with
each other. This is absolutely deadly. Never use global variables.

Inheritance is not quite as bad, but almost. Everything that depends
on a derived class also automatically depends on its base class. You
are not only coupling the derived class to the base class but also vice
versa. You can barely change one without changing the other. This
is not how flexible code is supposed to be. Avoid using inheritance.

Microservices, on the other hand, are highly decoupled. They are
chunks of code that can be called and executed independently.
Microservices are somewhat similar to functional programming,
where you have independent functions that run autonomously.
Microservices and functional programming both involve calling a

29. Decoupling 283

function or a piece of code that returns a value. 1

Only ask for things you directly need. This is another advantage of
functional programming or microservices. If you need to validate
an email, you can utilize the email validator, which can be either
a microservice or a pure function. The email validator returns a
result and resets. You only received what you asked for, nothing
more. There are no semi-useful objects wobbling around that you
don’t know how to deal with. You need exactly what is around.
This is the strength of functional programming.

Part 6: High level design

1https://youtu.be/4GnjjocWGOE

https://youtu.be/4GnjjocWGOE

30. Software
Architecture

“Architecture: The decisions you wish you could get right early.” -
Ralph Johnson

In this chapter, I am only providing a high-level introduction to
what software architecture is. I’m not an expert on software
architecture, and I’ll leave the details to more specialized books.
[](Clean Architecture), [](Fundamentals of Software Architecture)

There are many people who misunderstand the work of “real”
architects. Architects do not simply create a plan and pass it
on to the construction company. Instead, they closely monitor
the construction because there are always questions and problems
arising that need to be addressed.

In software engineering, it is similar. As far as I understand the
expression “software architecture”, architects are not only respon-
sible for designing the cornerstones of the software. They also have
to monitor the entire process of software development as there will
always be fundamental questions along the way.

Here is an example of how I understand the term “software archi-
tecture” based on my work experience: “I worked on a quantum
compiler. We used an Abstract Syntax Tree (AST) to represent
the gate operations. The gates were then translated into electrical
pulses that were played by our devices. The compiler was com-
prised of numerous visitors who traversed the AST and sequentially
conducted all calculations and optimizations.” Anyone familiar
with an AST and the visitor design pattern will have a good
understanding of the code I was describing. In four sentences,
I described the basic data structure (the AST) as well as the

30. Software Architecture 285

fundamental algorithm (the visitor pattern) used in the code.

The end of Architecture

One question is: where does architecture end? How detailed does
it get? And, in my opinion, the answer lies in how far the architect
plans it. There is no fixed boundary. What is clear, however, is
that the architect cannot work out all the details by himself. If
he did, there would no longer be a need for software engineers.
So, unless a project is very small, he only has time to focus on the
high-level design. All the technical details have to be worked out
by the engineers. The architecture is never perfect, and there will
always be implementation questions from the software engineers.
One way architects can stay connected with the development team
is by writing code themselves. They can write code examples or
tests that use the code and do something interesting with it. [DDD
p. 61 ?]

Designing Interfaces

One of the primary responsibilities of a software architect is to
define the building blocks (libraries) and interfaces of the entire
software system. Some of the interfaces may be only “partial
interfaces”, indicating that they are interfaces within a library. It
fulfills all the requirements of a real interface, and the library could
easily be divided into two parts at this point. It is an internal
interface that is not exposed to the outside.

A partial interface has the advantage of requiring only a limited
amount of maintenance for versioning, etc. However, there is a risk
that the interface may become obsolete over time as programmers
begin to work around it.

30. Software Architecture 286

It is the architect’s job to determine at the outset where and what
kind of interfaces are required. He has to foresee the future. The
YAGNI principle does not always apply to an architect. What if it
turns out that we really needed that interface after all? Implement-
ing an interface in existing code will be very costly.

Separate Libraries

Increase cohesion within a library and reduce coupling between
them. It’s exactly the same principle as for classes, just on a higher
level.

In every large codebase, you will have to work with multiple li-
braries. Some of the software components are developed internally,
while others are third-party libraries. There are many factors to
consider when making such decisions. The very first question is:
Do you need another library? Can you implement the required
functionality within an existing library? There are mechanisms
that favor either smaller or larger libraries.

These advantages for either side lead to trade-offs in library sizes.
Generally, it is advantageous to establish a dedicated library if there
is a suitable opportunity.

Coupling

Interestingly, all the explanations about coupling and cohesion
made for classes are also applicable to libraries. It is important
to note that libraries should not become too large and rigid. You
don’t win a prize for writing the largest library in the company.
One library that covers every object that exists. It just won’t work!

An apple can have a color, a flavor, and a price. There can be three
different areas: graphical rendering, food, and shopping. Each one
uses exactly one property, and it makes no sense to mix them up.

30. Software Architecture 287

Keep the libraries separate and write glue code between them if
needed. That’s the only way to go. Just trust me. Don’t write
monolithic software that tries to replicate the entire world. It won’t
work.

In every large codebase, you will have to work with multiple li-
braries. Some of the software components are developed internally,
while others are third-party libraries. There are many factors to
consider when making such decisions. The very first question is:
Do you need another library? Can you implement the required
functionality within an existing library? There are mechanisms
that favor either smaller or larger libraries.

These advantages for either side lead to trade-offs in library sizes.
Generally, it is advantageous to establish a dedicated library if there
is a suitable opportunity.

Coupling

Interestingly, all the explanations about coupling and cohesion
made for classes are also applicable to libraries. It is important
to note that libraries should not become too large and rigid. You
don’t win a prize for writing the largest library in the company.
One library that covers every object that exists. It just won’t work!

An apple can have a color, a flavor, and a price. There can be three
different areas: graphical rendering, food, and shopping. Each one
uses exactly one property, and it makes no sense to mix them up.
Keep the libraries separate and write glue code between them if
needed. That’s the only way to go. Just trust me. Don’t write
monolithic software that tries to replicate the entire world. It won’t
work.

31. Design Patterns
Design patterns [](Design Patterns, Elements of Reusable Object-
Oriented Software) refer to a specific arrangement of classes, meth-
ods, and inheritance that give rise to unique properties in the
resulting object. There are about two dozen commonly recognized
design patterns and numerous books explaining them. I have
neither the space nor the knowledge to write about all of them. I
just added this chapter because I think it’s important that you learn
about design patterns.

Factory

I’ll show the so-called factory pattern as an example to give you
an idea of what design patterns are all about. It’s a very simple
pattern. Chances are that you have already implemented a factory
before, even if you were not aware of this pattern.

1 class Car:

2 def move(self, speed):

3 if speed > 200:

4 raise Exception("Cannot move that fast")

5 print(f"Car is moving at {speed} km/h")

6

7 class SpaceShip:

8 def move(self, speed):

9 print(f"SpaceShip is moving at {speed} km/h")

10

11 def factory(type):

12 if type == "car":

13 return Car()

31. Design Patterns 289

14 if type == "spaceship":

15 return SpaceShip()

16

17 vehicles = []

18 vehicles.append(factory("car"))

19 vehicles.append(factory("spaceship"))

20

21 for vehicle in vehicles:

22 vehicle.move(100)

When looking at this code, you might ask yourself: “what is the
point”? This is because the factory in python doesn’t seem to be
anything special. In Python, implementing a factory is particularly
easy due to duck typing. In strongly typed languages like C++,
you would have to use a base class and pointers to implement the
vehicles.

The crucial point of the factory is that you can create objects of
different types depending on a string or whatever else you provide.
Factories are generally very useful for the creation of objects. They
take some arguments and return an object. In some cases, factories
are classes. But there is nothing wrong with defining them as
functions.

One last remark: Instead of using the if statements in the factory,
you could also use a dictionary. In my opinion, this makes the code
better and shorter.

1 factory = {

2 "car": Car(),

3 "spaceship": SpaceShip()

4 }

5

6 vehicle = factory["car"]

32. Domain Driven
Design

“The complexity of your code should be at most as complex as the
problem space it inhabits and no greater.” - David Whitney
1 2

This chapter is highly influenced by Eric Evans’ book [Domain
Driven Design](Domain Driven Design, Eric Evans). The book
covers mostly conceptual topics such as the domain model and
bounded context. This, along with the concept of “Ubiquitous lan-
guage” (Evans), forms the heart of the book and will be explained
in this chapter. Though there are some more books on this topic
by now. [For example](Learning Domain-Driven-Design, Vlad
Khononov).

Ubiquitous Language

In software engineering, there are very few topics that are described
purely mathematically. Most notably finance, physics, and engi-
neering. Most other topics are described using natural language.
This is a significant challenge because it is difficult to incorporate
such a topic into code. How do you implement an apple? The
answer is: it depends on who you are talking to.

It takes a lot of effort to understand a topic well enough to be
able to implement it. Engaging in extensive discussions with
domain experts about the topic is essential. Only through these

1https://github.com/ddd-referenz/ddd-referenz/blob/master/manuscript/
2https://youtu.be/kbGYy49fCz4

https://github.com/ddd-referenz/ddd-referenz/blob/master/manuscript/
https://youtu.be/kbGYy49fCz4

32. Domain Driven Design 291

discussions can you learn how their domain model is built up
and what the underlying mechanisms are. This common language
between developers and domain experts was named “Ubiquitous
Language” by Eric Evans. It is of utmost importance that the
development teams learn this language used by the domain experts.
The development team should communicate effectively using this
language, and implement it into the code. A domain expert must
be able to understand the general discussions among developers.
He has to be able to tell when something is off because there is
something that doesn’t make sense to him. For instance, if the
developers mix up the usage of atoms and molecules in a chemistry
simulation. Usually, domain experts can detect issues much earlier
than developers. If there are expressions used in the code that do
not exist in the domain, it is most likely incorrect.

Developing this Ubiquitous language is of utmost importance for
the whole project. Only a well-developed shared language be-
tween developers and domain experts enables high-level discus-
sions about the domain required for the success of the entire
project. Developing such a language requires a significant amount
of effort. Developers and domain experts need to stay in constant
communication and continuously refine their language usage to
enhance the model built upon this language. Play around with
this language. Attempt to alter the vocabulary. Try to create new
phrases. This is an important aspect of the Ubiquitous Language.
You have to develop this language like children learning to speak
a natural language. Find easier and more effective ways to express
your thoughts, regardless of how silly they may seem initially.
Utilize the insight gained in this way to enhance the domain
model. Ensure that the business experts understand what you are
discussing.

Thinking about the code in English language also helps, even if
you don’t do much DDD. The following explanation from the book
[The Art of Readable Code](The Art of Readable Code, Boswell and
Foucher) can help you improve your coding skills significantly:

32. Domain Driven Design 292

1. Describe what code needs to do, in plain English, as you
would to a colleague.

2. Pay attention to the keywords and phrases used in this
description.

3. Name your variables and functions to match this description.

Especially if you’re struggling to translate your thoughts into code,
these steps may help you organize your ideas, making it much
easier to write the code. If you cannot articulate the problem
or your design in words, there is likely something flawed. This
technique also allows you to avoid comments as you name your
variables theway youwould describe them in the English language.

The Domain Model

A model is a simplification of something real. A computer game,
for instance, is always amodel of some kind of reality. Interestingly,
a computer game does not necessarily become better if the model
or the graphics are more realistic. But rather if the model is more
focused on making a point. If it emphasizes the core domain of
what the game is all about while leaving out unnecessary details.

When writing code, we implement a model of reality. A model that
closely resembles the problem we are trying to solve. Not one that
is closest to reality. The model must cover the domain of interest.
The field in which you are working. The model needs to simplify
the domain you are working on to the bare minimum required to
fulfill your programming task.

The domain model is a high-level concept that needs to be de-
scribed. This can be done in several different ways. The most com-
mon descriptions are UML diagrams. These are commonly used
to illustrate the relationship between different classes. However,
UML diagrams are not always the ideal choice for describing code.

32. Domain Driven Design 293

UML has several deficiencies (and I don’t like them toomuch, that’s
why you don’t see any of them in this book).

Documentation and Planning

First, UML diagrams support only a somewhat limited amount of
interactions between classes or class instances. There are often
more effective ways to describe code than using a class diagram.
Maybe a piece of text or a diagram illustrating the temporal
dependency of a process would be suitable. It does not really matter
how you represent the domain model, as long as you understand it.

Secondly, one always has to consider that UML diagrams should
remain small. Some development teams have printed out their
entire code base as a UML diagram. But this practice is largely
ineffective. There are too many objects and interactions between
each other in such a graph, as if it could be useful. It’s just like a
map with too many details. Buried in all the information you won’t
find what you are looking for. A map should be simple and easy to
understand. It should only show what you are interessted in. And
the same applies to UML diagrams. Keep them small and concise.
Focus on what you are interessted in.

There have been attempts to create a programming language simi-
lar to UML, but they have all failed for various reasons. Graphical
programming simply isn’t any better than textual programming.
On the contrary. Graphical programming generally lacks impor-
tant tooling like version control or testing frameworks. Further-
more, a significant amount of information may be lost during the
creation of the diagram. UML is not a complete programming
language and it will never be. UML diagrams cannot explain the
entire functionality of your code. Thus, keep UML diagrams small.

Instead, you can use any type of document you prefer. At times, it
is better to create a temporal order of a process than a class diagram.
Or you can create a diagram with class instances instead of class

32. Domain Driven Design 294

definitions. After all, it’s called Object-Oriented Programming, not
Class-Oriented Programming.

As with all documents, the documentation of the domain core
should be kept up to date or archived. There is a risk that the docu-
mentation and the codemay diverge over time. Documentation has
similar drawbacks as those described in the chapter on comments.
It takes a lot of effort to keep documentation up to date.

Though documentation has its merits. Code is often too detailed to
effectively explain its functionality. And there are plenty of things
that code alone cannot explain. It has to be complemented possibly
by comments and some additional documentation.

Ensure that design documents extensively utilize the Ubiquitous
language. If the documentation does not use the same terms as
defined in the Ubiquitous language, it is not useful. It doesn’t
help to explain what you are trying to implement. It only creates
confusion.

Implementing a Model

There are cases where you cannot implement a model you have
developed. It would be simply too complex. It just doesn’t work
as planned. This is a clear sign that your model is not optimal. A
domain expert can explain it, so you should be able to implement it.
In theory, the complexity of the domain model should not exceed
the complexity of the problem it tries to implement. This is the
optimal scenario where a developer can explain the code to the
domain expert, and the domain expert can understand it. They
would simply talk about the same thing, the same logic. In this case,
the development of the code would feel very easy as everything just
falls into place.

In reality, finding the optimal model is a challenging process. Most
likely, you’ll end up in an iterative loop switching between coding,

32. Domain Driven Design 295

modeling, and refactoring until you have a breakthrough when you
suddenly realize what the optimal model should look like.

// graph of the breakthrough?

Decouple the domain-model code from your other code, as ex-
plained in the section on The Abstraction Layers. This is important
for maintaining a clean and concise domain code. Violating this
rule would also violate the SRP as the domain model is located on
a different abstraction level than for example the database code.
The domain model contains the actual conceptual complexity of
the final software. Therefore, it should not be cluttered with non-
model related things such as infrastructure or GUI code. Keep the
domain model slim.

Domain Levels

Not every part of the software can be treated with equal priority.
You’ll have to prioritize what is important. There will be various
domains in your project. For example, the core domain. The core
domain is the most crucial domain of your project and must be
treated as such. The core domain is what your company makes
money with; it is the unique aspect that sets your company apart
from other companies. Try to keep core domain concise; only
the most essential elements should be included in it. Your most
experienced developers should be working on this topic.

Around the core domain, you will have several other domains.
Each domain typically implements one class of features to support
the core domain. For example, an infrastructure domain may
involve managing the database or the math library. Keeping the
domains separate is important as it prevents you from creating a
Big Ball of Mud3.

Each domain corresponds to a piece of code, such as a library.
The different domains are fairly independent of each other. They

3https://en.wikipedia.org/wiki/Big_Ball_of_Mud

https://en.wikipedia.org/wiki/Big_Ball_of_Mud
https://en.wikipedia.org/wiki/Big_Ball_of_Mud

32. Domain Driven Design 296

are only linked through their interfaces. Otherwise, there doesn’t
have to be much resemblance between the different domains. For
example, the ubiquitous language does not have to be the same
across different models. On the contrary. The ubiquitous language
is expected to vary among different models, and at the interface,
there is an adapter that functions as a translator between the
different languages.

As one example, a flight may refer to the time between takeoff
and landing. But there may also be direct flights or flights
with stopovers. This is an example where one expression may
have different meanings, depending on the type of model you are
working with. Therefore, it is always important to keep in mind
the type of domain model you are currently working in and the
specific type of flight you are discussing.

Domain Specific Language

A Domain Specific Language (DSL) is a language is a language
specifically tailored to the needs of a certain problem. This DSL
has to resemble very closely the ubiquitous language as it should
be the code version of how marketing people would talk about the
problem. However, it is not exactly defined how this language
should be implemented. Obviously it has to be a programming
language of some sort. It can be one relying on heavy usage of
preprocessor macros, or a language like Gherkin that resembles
spoken language. Yet it can also be a normal API using function
calls.

Honestly, I don’t like the preprocessor or Gherkin approach. If that
was the best way to program, our programming languages would
all work this way. Which is not the case, probably for a reason. I
prefer to design a dedicated API to every problem that a marketing
person can still understand with a little bit of programming knowl-
edge. That’s also way less work than developing a preprocessor or

32. Domain Driven Design 297

Gherkin language.

Domain Boundaries

As your code base grows, it becomes more and more difficult to
keep working with a single domain model. There are processes
that tend to tear the domain model apart. An object may have
very different properties, depending on what part of the code you
are working on. For example a user has different properties in the
payment domain than in the GUI domain. Of course it would be
preferable to have a single domain model for the whole code base,
but this is not a requirement for good code. You may have several
different models, depending on which part of the code you are
working on. There will be interfaces between the different models.
And the big question is: how do you deal with the different models?

Bounded Context

A bounded context is everything within a boundary. Typically,
a domain model corresponds to a bounded context, where the
boundary represents its interface. The interface regulates what
goes in and out of the bounded context. Bounded contexts are
important as they separate specific problems from the enterprise-
wide codebase. One example of a bounded context is the math
library. The names used in this library may also be applied in
other contexts, but sin, cos, etc. have a very specific and well-
defined meaning within this bounded context. These expressions
should not be reused within the math library. On the other hand,
the terms sin and cos may be utilized in other bounded contexts
and carry a completely different significance.

Typically, domain models consist of one bounded context each. All
the problems mentioned so far for the domain models are true for

32. Domain Driven Design 298

the bounded contexts as well. Mostly that if they get too large, they
tend to be torn appart and that objects carry too much information.

Unified Model

The attempt to keep the model unified is the most obvious one.
Though it is challenging to sustain the necessary level of com-
munication to uphold this condition. A good way to enforce
this communication is through Continuous Integration (CI). CI
compells the team to merge frequently and at an early stage,
making any disparities between the model and the actual code
evident at an early stage. The automated tests enforce the behavior
of the model and warn the developers if they are inadvertently
changing it.

On the other hand, working on a unified model is not always
possible because for larger projects, the forces that tear the single
model apart become too large. In an enterprise-scale software,
it is simply not possible to work in a single model. The various
requirements for the code may become too extensive. In a single
model, the user object for instance, becomes too complex as it
continues to grow over time. At some point, it is easier to work
with several different user objects, each of which is smaller and
with different attributes, making them easier to manage.

Context Map

A context map is important when a model is divided into two or
more parts. All parts are now separate bounded contexts. They are
individual domain models with clearly defined boundaries. You’ll
need a translation map to convert one model to the other. The
translation map is similar to an adapter pattern. It converts one
interface to the other one.

32. Domain Driven Design 299

Shared Kernel

Two bounded contexts may share a common sub-context. This
is typically the core domain utilized by various domain models.
Having a shared domain core means that all involved models must
ensure that the domain core is always in sync. This can be done by
the CI. Additionally, it takes considerable communication between
teams. Otherwise, the core domain may become fragmented.

Anticorruption layer

The anticurrupiton layer is similar to the adapter design pattern.
You add a small layer around your context. If the other code
changes, you only have to adapt your anticorruption layer and not
the entire code base. This can save you a lot of work.

The anticurruption layer can be located on the outgoing part of
an interface, though typically the users of an interface write it
themselves. Just to make sure that their code won’t break if the
developers change something.

Separate ways

Sometimes, the burden of maintaining models collectively becomes
too big and it becomes apparent that collaborating further is no
longer worth the effort. There is very little overlap between the
two models, so cutting them apart is not a significant issue. If you
need a feature from another model, simply reimplement it. Having
a little bit of redundancy between two models may be preferable to
coupling them together. If the redundancy become too significant,
it may be worth implementing a shared kernel.

32. Domain Driven Design 300

Developer-Client Relationship

The model is split into two parts, and one development team is
relying on the other team’s model. If the upstream team (the
developers) is willing to cooperate (for financial or political reasons)
with the downstream team (the client), the two teams can establish
a developer-client relationship where the downstream team can
request features for implementation by the upstream team. The
success of this relationship hinges on politics and the cooperation
of the upstream team within the company.

Conformist

The conformist is a model where the downstream team just follows
the upstream team. The downstream team doesn’t have anything
to say. Needless to say that this is not a very preferable solution for
the downstream team, though it is sometimes inevitable.

Building Blocks of DDD

//[https://stackoverflow.com/questions/77425208/when-do-you-
use-entities-value-objects-and-aggregates-ddd]

In [Domain-Driven Design](Domain Driven Design, Eric Evans),
Eric Evans introduced, among others, the terms entities, services,
value objects, and aggregates. These are various models used to
differentiate between objects with diverse properties. Generally,
the building blocks of domain-driven design are implemented in
OO design. In most cases, this is the easiest choice to model the
functionality of the building blocks. However, other programming
paradigms may also be chosen.

I’d like to point out that you don’t have to implement everything
using entities, value objects, etc., as explained here. It should be

32. Domain Driven Design 301

regarded as just a different way to think about how to structure
your code.

Entities

[https://youtu.be/4rhzdZIDX_k]

Entities are unique objects. Their lifetime typically spans most of
the code’s lifespan, and they possess unique properties such as an
ID. Humans are a very simple example. Every human is unique,
and there are efforts to assign some form of identification to each
individual. Though this is harder than it sounds. Obviously, names
are not suitable as a unique identifier. The social security number is
used in some places, but not everyone has one, and there is nothing
comparable in many countries outside the US. For many websites,
the email address is used, and sometimes the phone number is also
required.

Another example of entities is seats in a stadium. Each customer
buys a ticket for a specific seat. Thus, the seats and the customers
are both entities. They are both unique objects. For each customer,
exactly one seat is reserved. Every seat has a unique ID. Two seats
are only considered equal if their IDs are the same. Even if all other
properties are the same, if the IDs are not identical, the seats are not
considered equal.

Now, it is different if the tickets are not assigned to a specific seat
(general admission). If the customers can sit in any available seat.
Then the seats and customers are no longer considered entities.
They are just one object among many. They become exchangeable.
They become value objects.

Opposite to value objects, entities are not constant. They may
have internal state which changes over time. Only their ID has
to remain constant. Whether this ID is really required depends on
the situation. Gerneally it is sufficient that you have access to a
variable. The name of this variable already serves as an ID inside

32. Domain Driven Design 302

your code. However, if you want to store this object in a database,
you certainly need some ID to retrieve this object later on.

Value Object

4

Value objects are essentially the opposite of entities. Value objects
are defined solely by their properties. They do not have a unique
ID. One example is apples in the supermarket. We can regard them
as indistinguishable. The only interesting aspects of an apple are
its flavor and price. Other than that, it can be replaced at any time.
Value objects are immutable. You can only set the properties of a
value object during its creation. Thus, if you don’t like your apple,
replacing it with another one is the only option you have. It’s not
possible to change its properties.

Having value objects is extremely useful, even if you don’t care
much about DDD. Value objects are generally small custom types,
such as a price. The price is set in its constructor and cannot be
changed thereafter. Furthermore, the constructor can ensure that
the price is valid; for example, it cannot be negative. Therefore,
the constructor takes care of the checks and you won’t have to
bother with it any longer. Another example is the usage of an
email address object. This object can ensure that the email address
is valid. Therefore, using value objects is much better than using a
string for the email address.

Value objects also help against the primitive obsession. Here is a
small example of an email address as a value object:

4https://youtu.be/P5CRea21R2E

https://youtu.be/P5CRea21R2E

32. Domain Driven Design 303

1 def _check_email_address(address):

2 assert address.count("@") == 1

3 assert address.count(".") >= 1

4

5 class EmailAddress:

6 def __init__(self, address):

7 _check_email_address(address)

8 self.ADDRESS = address

It fulfills the requirement of a value object. You can only set
the value once in the constructor and the validity of the adress
is checked there as well. It is not possible to change the adress
afterwards. Class instances of EmailAdress are immutable. Value
objects are therefore perfectly suited for use in functional program-
ming.

As you may have noticed, value objects don’t fit into any of the
class types we discussed so far. A value object is a data class with
additional checks in the constructor.

Now, the question remains: when should an object be considered
an entity or a value object? As I mentioned before, value objects
are immutable. So, if you have an object, like the apple mentioned
above, that will never change its properties, it is likely to be a value
object. On the other hand, if something is important enough to
change its properties, it should be considered an entity. In general,
you should have much more value objects than entities in your
code.

Services

Services are used for operations on value objects or entities. A good
service has 3 properties [](Domain Driven Design, Eric Evans, p.
105):

32. Domain Driven Design 304

• The operation does not naturally align with an entity or a
value object.

• The interface of the service is defined in terms of the domain
model.

• The service does not have any internal state that can change
over time.

A service is an operation on the domain model. Its name is part
of the Ubiquitous language. Services are typically represented by
functions.

While entities and value objects are generally too fine-grained to
be reused, services are of medium granularity and thus appropriate
for reuse.

Aggregates

Aggregates are a special type of entity. They typically consist of
other entities and value objects. The goal of an aggregate is to form
an object whose operations never violate the systems invariants. A
very common example of an aggregate are smart pointers or the
vector class in C++. They are both implemented following the
“Resource Aquisition Is Initialization” (RAII) pattern [](Effective
modern C++). Both store some data and encapsulate the memory
management at the same time. When using the interface of a
vector, the mechanisms underneath it always make sure there is
enoughmemory allocated and that it will be deleted once the vector
goes out of scope. And as a user, you don’t even have to think about
these invariants. They are hidden within the implementation.

Another somewhat more general example of an aggregate is a car.
The car has a global ID. It consists of an engine, a chassis, and four
tires. Let’s say that the tires wear out, and occasionally, you have
to replace them. This makes them an entity. Meanwhile, the engine
and the chassis never change their state. These are value objects.

32. Domain Driven Design 305

The entire car can only be accessed from the outside. The engine,
chassis, and tires can only be accessed from within the car object.

Once the tires are worn out, they are disposed of at the recycling
plant. The recycling plant is likely represented by a different
domain model compared to the car. At the recycling plant, no one
cares anymore about how worn out a single tire is. The recycling
plant simply consists of one huge pile of old tires. The tires become
valuable object. However, we are not going to model the recycling
plant in our code here.

Here is an example of how the car entity could be modeled in code.
Engine, and Chassis are value objects, tires are entities.

1 MAX_DISTANCE = 1000

2

3 class Tire():

4 def __init__(self):

5 # invariant: self._distance_remaining >= 0

6 self._distance_remaining = MAX_DISTANCE

7

8 def drive(self, distance):

9 self._distance_remaining -= distance

10 assert self._distance_remaining >= 0

11

12 def get_distance_remaining(self):

13 return self._distance_remaining

14

15 def replace_tire_if_needed(tire, distance):

16 if tire.get_distance_remaining() < distance:

17 tire = Tire()

18

19 def drive(tires, distance)

20 assert distance <= MAX_DISTANCE

21 for tire in tires:

22 replace_tire_if_needed(tire, distance)

23 tire.drive(distance)

32. Domain Driven Design 306

24

25 class Engine():

26 # ...

27 pass

28

29 class Chassis():

30 # ...

31 pass

32

33 class Car:

34 def __init__(self):

35 self._tires = [Tire() for _ in range(4)]

36 self._engine = Engine()

37 self._chassis = Chassis()

38

39 def drive(self, distance):

40 drive(self._tires, distance)

You might have realized that Car is a delegating class. Delegating
classes typically meet the requirements of an aggregate. A dele-
gating class hides all the functionality within the class so that it is
only accessible through the class instance itself. The car instance
is accessible as it is a variable. A unique ID would only be needed
for saving the car object in a database and retrieving it. If you
want to save the car information to a database, you would need
an identifier, such as the license number. The entire car would be
saved intact under this ID.

It is not possible to modify the instance of the Car and its internals
in any other way. It is not possible to violate the car’s invariants.
All the variables are encapsulated within the Car, and the methods
are guaranteed to maintain the invariants.

The class Car may have the following invariants. It needs:

• a unique identifier (as it’s an aggregate)

32. Domain Driven Design 307

• 4 tires (value objects) with _distance_remaining >= 0

• 1 engine (entity) with an ID
• 1 chassis (value object) Upon construction, these invariants
are guaranteed by the constructor of the class, assuming that
the ID is indeed unique. All the other functions (services)
that act on the car must ensure that these invariants are not
violated. The method car.drive() calls the function to re-
place tires if they are worn down, but there are still four tires
with a positive _distance_remaining after the replacement
and driving some distance.

Aggregates should always be treated as whole objects, for example,
saved to or loaded from a database. Aggregates are always entirely
within the domain level of your code. It can’t be any other
way because all parts of an aggregate are on the same level of
abstraction. Having one element of the infrastructure level inside
an aggregate would violate the SRP.

As the root entity is the only thing accessible from the outside, it
is comparatively simple to enforce the invariants of the aggregate.
For example, every car has four wheels that are not yet worn down.
All accessor functions must pass through the root entity. Thus, this
is the place where you can enforce the invariants. There, you can
define functions as drive that take care of ensuring the wheels are
in good condition and replace them if necessary.

Aggregate instances are often created by a factory or another
creational design pattern. These patterns allow us to outsource
the creation of a fairly complex object. This is in accordance with
the SRP. If the instantiation of an object is fairly complex, it is
a noteworthy task and should be handled in a dedicated object.
Furthermore, the factory can also take care of the invariants of the
class instance at its creation.

Just to clarify the concept of an aggregate, let’s consider an example
where it is violated.

32. Domain Driven Design 308

1 class Engine:

2 _is_started = False

3

4 def start(self):

5 self._is_started = True

6

7 def is_started(self):

8 return self._is_started

9

10 class Car:

11 def __init__(self, engine):

12 self._engine = engine

13

14 def start(self):

15 self._engine.start()

16

17 def get_engine_status(self):

18 return self._engine.is_started()

19

20 engine = Engine()

21 car = Car(engine)

22 car.start()

23 print(engine.is_started()) # True

Now that the engine is started, we can use it. This, however, is
bad code. The engine is now part of the car aggregate and should
only be accessed through the car interface. Here it is accessed
directly. You can also think of a real car where you install the
engine, start the car, and then remove the engine for inspection.
This feels wrong. And as it’s wrong in the real world, it is most
likely wrong in the code domain as well.

The solution is the function get_engine_status() that I defined in
the Car class as well. Now, the aggregate is properly encapsulated,
and you can access the relevant properties of the engine through the
car’s interface. Note that this way, we don’t need the intermediate

32. Domain Driven Design 309

engine object. Instead, we can directly instantiate it inside the Car
constructor.

1 car = Car(Engine())

Of course, it is sometimes more convenient to have an engine as a
temporary object. For example, if the readability is affected because
the engine is created by a function with a very long name. To
achieve this, you should create the mentioned object along with
the car instance within a specialized factory to encapsulate this
temporary object. There, you construct the engine and then pass it
on to the car constructor. The engine should never be visible from
the outside. It should be accessible only through the car interface.

33. 3rd party software
“Prefer visa over power shell” – some YouTube video

There are thousands of companies selling software parts. For many
problems, there are open-source solutions available. This is great,
but as always, there is a price to pay.

No airplane engineer would start developing his own jet engine,
and no programmer would write their own database software.
Even if they don’t like the products available, they can still purchase
something from the market. Everything else is simply crazy; it’s
too expensive. Other companies are developing databases, and
you are not going to compete with them. You want to do other
things instead. You have found your niche elsewhere and you plan
to remain there unless there is a compelling reason to completely
change your business. You outsource everything that you don’t
really have to do yourself.

In software engineering, there are not many products available
to address all possible problems. But still, there are quite a few
suppliers available who can assist you in solving some of your
issues. Especially when it comes to infrastructure.

It is possible that you have a bad feeling about this approach. You
want to do everything by yourself. You don’t want to pay other
companies for their libraries. I can assure you that your feelings
are natural. But you have to get over it. It’s just not worth doing
everything by yourself. You haven’t developed your own operating
system, the database you’re using nor the cloud service. Instead,
you earn a good amount of money every year by working on your
core domain. You do what you can do best. And if you can save
time by outsourcing other parts of the code, that is great. This also
allows you to save on maintenance costs, which are typically even
more expensive than the actual development of the software.

33. 3rd party software 311

Using third-party libraries or software is great. Most of the time.
But sometimes it also has its issues. Some companies did not adhere
to coding standards, and now they are in trouble. And there are
many more sources of trouble. Most famously, all the customers
using Oracle databases who didn’t decouple the database from the
rest of the code. The code extensively utilizes Oracle database
queries, making it challenging to switch to a different database
vendor. These companies now pay substantial licensing fees and
cannot evade them.

Another problem is libraries with comparatively few contributors.
At some point, there might be no one left to maintain the code.
In most areas, you can still use such a library for a while, but
you should look out for a different solution. A lot of problems
can arise when using software that is no longer supported. If you
truly require this software, you may want to consider becoming a
contributor yourself.

Everything explained here is also true for IT services and infrastruc-
ture (AmazonWeb Services (AWS), github, google maps, …). These
services are great, but you should always have the ability to change
your supplier. For example, there are medium-sized companies that
require a significant amount of computing power. They started
the company using AWS, just like everyone else does. It’s just too
convenient. As the company grew, the AWS bill reached millions,
prompting the company to migrate to its own server infrastructure.
[https://youtu.be/XAbX62m4fhI]

In short, third-party software and services are generally excellent.
They may save you a lot of work and money. But you have to make
sure you don’t get stuck with it. You have to stay flexible. Decouple
the third-party library from your code. Write a lightweight adapter
between your code and the library. And if you don’t, make sure that
you really want to stick to this specific third-party code for a long
time. As always, if you can write tests using dependency injection
and similar techniques, you are probably fine. In order to mock the
database, you need an interface that can be used to support other

33. 3rd party software 312

databases as well. So, you are flexible.

The very big question is always when you really need such an
adapter. Most of the time, I am too lazy to write one. But you
certainly need one when dealing with databases. Call all the
database-specific queries only within this thin layer. The entire
remaining code is a database-syntax-free zone. This makes it very
simple to exchange the database. You only have to replace the
wrapper. You might have to modify some of the implementation
since the functionality varies slightly between databases. But this
is a small price to pay compared to the millions you paid to Oracle
so far.

You should reconsider using a third-party library if it has only a
few developers. If there is a reasonable alternative, you might be
better off avoiding it. On the other hand, if this code is crucial for
your software, it would be beneficial to participate in the project
and contribute as a developer. In fact, pretty much all major
software companies support the software projects they rely on.
Some projects received so much additional manpower that they ran
out of work to do. And even the unthinkable happened: Microsoft
became one of the biggest contributors to the Linux kernel!

Part 7: Existing Code

34. Refactoring
Fundamentals

“If you wait until you can make a complete justification for a
change, you’ve waited too long.” – Eric Evans

There are books about refactoring techniques [Refactoring] which
are highly recommendable. Still, the most important aspect of
refactoring is that you know how good code looks like (and that
you have plenty of tests to back you up). If you have a vision how
the code should look, you are always going to find a way, how to
make it better.

There will be change

If code exists for a long period (which is usually sooner rather than
later), it will need to adapt to changes. When you add new features,
the build system might change, the database could be altered, and
you will need to adjust your code to fit the new environment. This
is inevitable. Only if you write extremely low-level code with
minimal dependencies, youmight be safe. Or if you developmobile
apps that are expected to last only 1 or 2 years. In all other cases,
you have no choice but to adapt to the changing environment. Your
code has to remain flexible. You have to keep it in shape. Ensure
that you can adapt to change.

34. Refactoring Fundamentals 314

Don’t Let Your Code Rot

The most fundamental rule about refactoring is that you shouldn’t
let your code rot to begin with. Always make sure your code is
well-tested and well-structured. This will save you a lot of pain
in the future. Once you reach the point of having classes that
are a thousand lines long, you will struggle to regain control of
your code. By writing properly tested code from the beginning,
you’ll save a lot of time in the long run. Not only will it be easier
to refactor your code, but your code quality will also improve,
requiring less refactoring.

Even without external changes, it is important to refactor your
code once in a while. We have to face the sad fact that our
perfect code deteriorates over time. Every line of code you add is a
potential source of deteriorating code quality. You may introduce
duplication, enlarge the class size, or disrupt the logical order in
your code. Over time, the code becomes messy and needs to be
cleaned up. Sometimes it is also compared to entropy, the physical
law of disorder [](The Pragmatic Programmer). Fighting entropy is
hard. It takes a lot of effort, as explained in the section on entropy
[](chapter Physical Laws of Code).

I assume that everyone reading this book is familiar with some of
the reasons why code rots. The very first example is copy paste
code. Copy-paste code should be banned altogether. Instead of
rewriting a function to meet its new requirements, one simply
duplicates it and modifies a line or two in its new position. Another
issue arises when adding more and more features to an existing
class. Also, the features that you added are in the wrong place in
your code and need to be moved to the correct location. These are
some of the reasons why code rots and requires regular refactoring.

34. Refactoring Fundamentals 315

Refactoring and Automated Tests

Refactoring means to change the code without altering its function-
ality. This is what people didn’t do in very old code. They were
afraid that they would break the existing functionality. That they
would introduce bugs. It’s as if they didn’t clean up the kitchen
because they were afraid they might break something. And they
didn’t see the reason why they should have cleaned up the kitchen.
They only had a nagging doubt that somethingwaswrong, but they
couldn’t pinpoint the exact issue. Long story short, the next person
had to cook in a dirty kitchen. At some point, there were so many
dirty dishes in the kitchen that they didn’t even notice the bugs that
could hide underneath each and every dirty plate. People using the
kitchen were afraid of introducing bugs when refactoring, but in
the end, they still ended up with bugs. They didn’t clean up the
kitchen or refactor the code. They started encountering numerous
bugs further down the road because the whole code became a mess.

I really hope you understand that not refactoring is not an option.
A cook has to clean up the kitchen continuously, just as you have
to refactor your code. All the time. Refactoring is an integral part
of your job, not just an optional feature. You are responsible for
refactoring your code. Therefore, we have to help you overcome
your fear of refactoring and your fear of introducing bugs. You
need a safety net. Something that automatically notifies you when
you introduce a bug… you need… automated tests! Unit tests,
functional tests, performance tests, etc. Just make sure your tests
cover pretty much all the functionality of the code you want to
refactor. There are tools available to highlight the lines of your
code that are covered by tests. Or, you can also modify one line of
code and check if any of the tests fail, although this approach is not
very productive.

If you are confident about the test coverage, you can do prettymuch
anything you want. Whatever code you dislike, simply discard the
code and rewrite it from scratch. Alternatively, utilize a third-party

34. Refactoring Fundamentals 316

library if one is available. As long as the tests pass, you are most
likely fine.

Keep Refactorings Small

Most refactoring is usually minor in scale. Renaming a variable.
Breaking up a class into two new classes. Removing duplicate code.
Extracting functions. Meanwhile, rewrites of entire features are
relatively uncommon.

The biggest mistake one can make with refactoring is waiting too
long. If you have a gut feeling that your fundamental data structure
could be an obstacle, you should act right away. Discuss with your
work colleagues whether this is truly the correct choice and explore
alternative options. Peripheral code can still be refactored later on.
But if the core of your code is rotten, you will have a big issue fixing
it. And it will only get worse if you don’t act quickly. As always,
the core of your code needs the highest priority.

Probably you do some smaller refactorings quite often. But not
really in a structured manner. You refactor code as soon as you
encounter something you don’t like. This is honorable. But there is
a very simple workflow that I can recommend to everyone. It’s:
write code – test – refactor. For every feature you implement,
you should follow this pattern. Or even better, you can also write
tests - code - refactor, as explained in the section on Test-Driven
Development [](chapter Writing Better Code with Tests). This
pattern is great because you can focus on one thing at a time. You
can start by writing mediocre code. Maybe you are unsure about
how to name a variable, or you might be inclined to create a class
that is too large. There may be duplicated code. Certainly, it would
be better to write flawless code from the outset. But you cannot
multitask. You cannot develop code and make it perfect at the same
time. You’re not perfect. Learn to deal with your imperfections and
refactor your code.

34. Refactoring Fundamentals 317

Then you write the tests. Some tests may fail because your
imperfect code might contain bugs. When you fix the bugs, the
code becomes even more messy. Even if you had written sublime
code to begin with, due to the inevitable bug fixes, you would
still have to refactor at some point. This is something that was
overlooked by the waterfall development process. You never write
perfect code to start with. You always miss some details that you
have to fix later on. It always takes some refactoring to end up with
good code.

Finally, you refactor. You review all the code you havewritten since
the last time you refactored. Possibly, there is also existing code
that has been around for a long time and could be merged with
your new code because it is very similar. The code will probably
look more complicated than you would expect. Then you try to
rethink the logic of the problem you just solved. Can you modify
the algorithm so that you can eliminate all the if statements for the
corner cases? Do you need to sort your data structures differently
to improve the code? //// There are hundreds of things you could
do to improve the quality of the code. When examining the code,
identify the key elements that require modification. Try to write
good code and trust your instincts. But make sure you also get
some real work done between the refactoring sessions. The code
will never be perfect. But at some point it will be good enough.
Move on once this is the case. Don’t get stuck in endless discussions
about variable names. Go ahead and write some new code again.

Levels of Refactoring

Maybe you have a simple question: At what level should you
refactor? Should you only refactor small elements, or should you
delve deep into the core of your software?

Let me provide another brief example. If you are planning to build
a house and enjoy cooking. Ensure that there is ample space in the

34. Refactoring Fundamentals 318

kitchen for all your equipment. You are very pleased. This is the
equivalent of a first draft of your code. Everything looks perfect.

Yet dishes get dirty, so you have to clean up the kitchen every
day. Otherwise, you’d be left with a huge mess in no time. This
corresponds to the everyday refactoring done by a software engi-
neer. Ensure you eliminate code duplications, name all variables
appropriately, and clean up anything you find unsatisfactory along
the way.

Over time, as you occasionally purchase additional kitchen gadgets,
you may find yourself running out of space. You need to sort
out all the old devices you no longer need and utilize your Tetris
skills to neatly fit everything back onto the shelves in an organized
manner. Make sure you can still find your belongings. This is an
intermediate refactoring.

At some point, you buy another device and realize there is not
enough space for your equipment anymore. There is only one
solution. You need a bigger kitchen. You need to plan how much
additional space you will require for the next few years and decide
whether to tear down some walls or expand your house. Now, this
will be a very demanding and expensive refactoring.

I hope you received the memo. Small refactoring should be done
all the time. Every few lines of code. The costs are low, and it
keeps your workspace clean. Intermediate refactoring costs more
and affects a significant portion of your codebase. It should be
discussed with your work colleagues during the coffee break and
may be done together. Big refactoring is really labor-intensive. It
is done only every few months and requires careful planning and
dedicated meetings because there is a lot at stake.

Refactoring is Dynamic

Waterfall refactoring is bound to fail for the same reasons that most
waterfall projects do. Refactoring is concrete. Just like regular

34. Refactoring Fundamentals 319

coding. It consists of a learning process. It’s a feedback loop.
Refactoring usually needs to be done incrementally, and endless
planning sessions are a waste of time. Every couple of lines you
write, you learn so many new things that require you to adapt the
refactoring plans. Possibly, you may even have to abandon these
grand plans altogether because you realize they just won’t work.
You can have as many beautiful plans as you want. If they don’t
work out, they are worthless.

You have to face the facts. Waterfall refactoring is not working out.
Instead, you have to follow the actual dynamics of making changes,
learning more about your code, and adapting your future changes.
These three steps are the only way refactoring can be done.

// Make circle graphic: changes to be made, make changes, more
changes to be made

Refactoring certainly has the highest impact when you have gained
a new understanding of the problem you are trying to solve. This
feature allows you to rewrite an entire piece of code at once,
enabling you to make significant progress in improving your code
quality. Eric Evans refers to this as “Refactoring towards deeper
insight”, [Domain-Driven Design].

The Circle of Doom

There is something very mean about refactoring. Refactoring good
code is easier than refactoring bad code. For example, dealing with
code that includes global variables, numerous dependencies, and
large classes is always challenging, whether you are writing new
code, tests, or performing refactoring. In all cases, you have to
understand what the code really does. For writing new code and
tests, this is bad enough. But with refactoring, it can become a
nightmare due to the presence of a “circle of doom.” You may find
yourself delaying refactoring tasks because it can be challenging
to comprehend poorly written code. But over time, this will

34. Refactoring Fundamentals 320

only exacerbate the situation. Until you reach the point where
refactoring becomes essentially impossible, and you are paralyzed.
You would need to refactor your code because it is poorly written,
but you are unable to do so because it has deteriorated to a point
where improvement is no longer possible.

Don’t slack off on refactoring. You’ll pay the price sooner rather
than later. Make sure you always keep your code well-organized;
this will greatly simplify your life. Always remember to keep
writing tests. Missing tests are the most obvious sign that your
code is getting out of hand.

However, there is one thing you should always consider while
refactoring: even if you don’t like the behavior of your code as
you are refactoring, you should not change it. The behavior of
the software may not be changed. Even if it’s a bug, you should
reconsider fixing it because users may rely on that bug.

When to Refactor

It is generally a good idea to do refactoring. Most developers do too
little refactoring rather than too much. Still, there are some general
recommendations on when to refactor or not.

Every few lines of code you write, you should consider refactoring
them. It is not always necessary, though it is by far the best
moment. You still knowwhat you just programmed, and youmight
have an idea of what is left to improve. Maybe you just introduced
some code duplication? Additionally, you are always working in
a tidy workplace, which increases your productivity. Code that is
well taken care of is much easier to modify.

Asmentioned earlier, you should always refactor the code you have
just written. This is the number one rule. Furthermore, you should
adhere to the Boy Scout rule: “Leave the campground tidier than

34. Refactoring Fundamentals 321

you found it.” Always refactor a little more than you should. This
helps fight code entropy.

Refactor when you find a bug. Don’t just add a patch that might
resolve the issue superficially. Search for the actual source of the
problem. Consider if there is any redundant code that needs to be
fixed or refactored for better efficiency. Find a viable solution for
the bug, which may involve some refactoring. This is time well
spent because usually bugs tend to cluster. So if you found one
bug, there might be more.

If you add a new feature, it may not seamlessly integrate into the
existing codebase. Most likely, the code has not been cleaned up,
or the other authors simply didn’t know how the code should look
in the future. Hence, the code has a different structure than what is
required for this new feature. But now, as you’re adding this new
feature, you’re more intelligent. You might have an idea of how
the code should really look for the feature to fit in. Now, don’t
force the feature into the existing codebase. Refactor instead and
ensure the new feature integrates seamlessly. Maybe transform
a data structure as explained in the section on Orthogonality
[…]. Altogether, this is less work. And especially, the code will
ultimately be in a much better condition. Write an adapter to
seamlessly integrate the feature into the existing code base.

During code review, you can also perform refactoring. Team up
with the code author and engage in pair programming. This type
of review is much more motivating than a standard one because
it facilitates better knowledge exchange and significantly enhances
the review’s output.

What to Refactor

Generally, you should refactor the code that you work with. In
some cases, you may refactor code that you have just walked by,

34. Refactoring Fundamentals 322

but this should not be the rule. If there is no reason for you to touch
that code at the moment, you shouldn’t refactor it. It is important
in software engineering to know when to postpone certain tasks.
And this is one of the cases. If no one is currently working with a
particular piece of code, there is no immediate need to refactor it.

Once in a while, you have to do a significant refactoring. One that
you don’t just do between writing a few lines of code, but it will
take considerable effort to get it done. You should probably discuss
this topic with your work colleagues, as opposed to the smaller
refactorings that you do on your own.

Last but not least, it is your code. You are responsible. You are the
one to decide when it’s time for refactoring. Don’t ask your boss
for permission to refactor. Just do it when you have to.

Refactoring Process

Writing code follows a similar process to the one I use whenwriting
this book. I first started by jotting down the basic ideas. A rough
draft of the content I wanted to include in this book. Some ideas I
had for a long time, while others I acquired while reading other
books. I read the text repeatedly, reworking it several times. I
clarified points, removed redundancies, rearranged chapters, and
added explanations where necessary. Every time I started to
understand my text better, I could further improve it. Until I
reached the point where the text said what I wanted it to. Until
I had gathered all my knowledge from my head and organized it
into a human readable text. Or as Ward Cunningham put it: “By
refactoring, I move the understanding frommy head into the code.”

35. Refactoring
Techniques

“The fewer methods a class has, the better. The fewer variables a
function knows about, the better. The fewer instance variables a
class has, the better” - Robert C. Martin [Clean Code]

// move some of these techniques to working with existing code? I
believe most of them also work with legacy code.

The techniques explained here mostly require an existing set of
automated tests because changes to the code may introduce bugs
otherwise. Refactoring can also be done without tests. In most
cases, this game is very dangerous to play. Even if some techniques
seem safe to be applied without tests, there is always some latent
danger of breaking the code in some way. Especially if you
have global variables or overridden functions, it becomes tricky.
Refactoring code in compiled languages is easier than in inter-
preted languages because the compiler performs valuable checks
on names, functions, types, and so on.

There is a wide range of concrete refactoring techniques to be
applied in specific cases. I will only briefly explain some of
them. Most of the concepts originate from the book “Refactoring”
by Martin Fowler [Refactoring, Improving the Design of Existing
Code, 2019]. In the following, I will group these techniques into two
categories: one category mostly explained in [Refactoring, Fowler]
for good code, and the other category from [WELC, Feathers] for
bad legacy code with global variables, inheritance, no tests, etc.

The techniques explained in this chapter are unlikely to create
bugs. The good refactoring usually consists of a sequence of small
changes and the code should almost be in a working state all the

35. Refactoring Techniques 324

time. However you never know. And in very convoluted code, I
wouldn’t dare to break a class into pieces without having it covered
with unit tests.

When following the rules taught in this book, you should bewriting
good code. It is well-tested, contains clear interfaces, no global
variables, and no side effects. Still, you have to refactor once in
a while. But it’s comparatively easy because you can focus on
the refactoring part. The tests are already in place to ensure that
you don’t break anything. In this section, you will learn some
techniques that you can apply when refactoring.

Where to start

Usually it takes me very little time to see whether some code needs
to be refactored and if yes, what the problems are. The most
frequent problem is classes and functions which are way too long.
Those are also very easy to spot, but unfortunatley they are not
always that easy to fix. Along with too long functions comes the
problem of too many levels of indentation. This is another sign that
the logic of the code should be simplified.

Missing unit tests is also a very common problem. Though this one
is even harder to fix in a code review. You simply lack information
on what a piece of code does. Furthermore, it is certainly the task
of the original programmer to write tests, not yours.

A common problem that is easy to spot are comments. If the
expression used to explain something in a comment is different
than the name of the variable, something is off. Usually the variable
should be renamed. Though renaming has not the highest priority.
It is more important to fix the logic of the code.

35. Refactoring Techniques 325

Breaking classes

Breaking classes into smaller pieces is one of the most commonly
used refactoring processes. As it is tempting to write too big classes
to begin with, and due to the fact that classes tend to grow over
time, they have to be split once in a while. Classes should be small.
And in my opinion, the best classes are the ones that don’t exist.
Use dataclasses and a few functions instead to organize your code.
Functional programming does have its merits.

Too many methods

One issue of classes is excessive usage of methods. As I’ve
already explained before, I prefer having freestanding functions
over methods. They are decoupled and you can deal with them
more freely. For instance, you can move these functions into a new
class if you like, with only minor effort. Furthermore, it is easier
to write unit tests for freestanding functions compared to methods.
The technique behind it is fairly simple. Just search for functions
that use only “few” class variables. Remove this method from the
class and create a function out of it. Instead of passing self in
Python, you have to pass all the function arguments explicitly.

1 class House:

2 def __init__(self, address):

3 self._address = address

4

5 def _print_address(self):

6 # do something more with _address

7 print(self._address)

8

9 def wrapper(self):

10 # do something with _address

11 self._print_address()

35. Refactoring Techniques 326

Here we can refactor the _print_address method out of the class.
The only variable needed by this method is _address. So we have
to pass this variable as a function argument.

1 def _print_address(address):

2 # do something more with address

3 print(address)

4

5 class House:

6 def __init__(self, address):

7 self._address = address

8

9 def wrapper(self):

10 # do something with _address

11 _print_address(self._address)

This is of course a very artificial example and the question is,
wherther it’s worth doing this refactoring. As the class is very
small, it doesn’t really matter. But as the class grows, it becomes
more and more important to increase cohesion and refactor out
everything that doesn’t need to be within the class. Here, _print_-
address is such an example. It requires only one member variable
from the class, so it has comparably little cohesion. It is therefore a
candidate to be refactored out into a separate function. If you don’t
refactor such methods out of your classes, your code becomes rigid
and making changes to the class will require a lot of effort.

In our example, we were able to reduce the number of methods
that need access to _address from 2 to 1. This is a very significant
improvement. If you now have to change the shape of the class
by changing the _address member variable, it has become much
easier. You’ll only have to change one method class.

Of course, this example is so small that you could completely
dismantle the class. It has only one variale that is only used in one
method. This is not what you should write a class for. The only

35. Refactoring Techniques 327

class like thing here should be the address, which should probably
be a dataclass.

Structuring variables

If variables are always used together in the same methods, they
have high cohesion. This means that they probably belong together.
They should be stored in a dataclass. Let’s look at the following
example:

// add price in a separate list? It’s a separate concern

1 class Fish:

2 def __init__(self, name, age, weight):

3 self._name = name

4 self._age = age

5 self._weight = weight

6 self._price = 10.0

7

8 def print_fish(self):

9 print(f"{self._name} is {self._age} years old and\

10 weighs {self._weight} kg.")

Here, the variables _name, _age and _weight are all used together.
So it makes sense to store them in a dedicated dataclass.

35. Refactoring Techniques 328

1 from dataclasses import dataclass

2

3 @dataclass

4 class PersonalDetails:

5 name: str

6 age: int

7 weight: float

8

9 def __str__(self):

10 return f"{self.name} is {self.age} years old and \

11 weighs {self.weight} kg."

12

13 class Fish:

14 def __init__(self, personal_details):

15 self._personal_details = personal_details

16 self._price = 10.0

17

18 def print_fish(self):

19 print(self._personal_details)

And probably we could rename the print_fish method into
print_personal_details since it only prints the personal details
of the fish. As the print_fish method now depends only on the
_personal_details variable, we could also make it a freestanding
function that takes only this variable as an argument.

Possibly this code above is still coupled too strongly. The
personal_details and the price are not part of the same domain.
It might make sense to store the price in a dictionary with the
name separate from the other information. So if you want to
have complete information about the fish, you would have to
combine the information from the personal_details and the
price dictionary. That would probably be the best solution. But
this is a different story.

35. Refactoring Techniques 329

Too many variales

A very common problem is classes having too many variables. This
is a so called “God Class”. It does too much and should be broken
into smaller pieces. There are several techniques how to deal with
this issue. First of all, you should look at the variables. The search
function of the IDEwill tell you, how often a variable is used within
a class. If a variable is used only two or three times and the class is
100 lines long, you should try to remove the variable from the class.
It has too little cohesion. Though, this is easier said than done. You
will have to figure out how the few methods using this variable get
access to it. But maybe this is also a sign that the class design is
bad and you should refactor these few methods out of the class as
well.

Let’s take a look at the following class Boat. It is not that big because
I already refactored out the Appearance into a dedicated dataclass.

1 from dataclasses import dataclass

2

3 @dataclass

4 class Appearance:

5 COLOR: str # should be an enum, but for brevity I use\

6 a string

7 WEIGHT: float

8 LENGTH: float

9

10 def __str__(self):

11 return f"The boat is {self.COLOR}, {self.LENGTH} \

12 meters long and weighs {self.WEIGHT}."

13

14 class Boat:

15 # The __init__ function should be refactored and not \

16 take that many arguments.

17 # But that's a different story.

18 def __init__(self, engine, price, color, weight, leng\

35. Refactoring Techniques 330

19 th):

20 self._engine = engine

21 self.PRICE = price

22 self.APPEARANCE = Appearance(color, weight, lengt\

23 h)

24

25 def describe_appearance(self):

26 print(self.APPEARANCE)

27

28 # ...

We have all these physical properties of the boat where the price

doesn’t really fit into. So I’d like to split the class into two
pieces. One class contains all the physical properties that I call
BoatFramework, the other thing is the price, where we don’t even
need a dedicated class for.

1 from dataclasses import dataclass

2

3 @dataclass

4 class Appearance:

5 COLOR: str # should be an enum, but for brevity I use\

6 a string

7 WEIGHT: float

8 LENGTH: float

9

10 def __str__(self):

11 return f"The boat is {self.COLOR}, {self.LENGTH} \

12 meters long and weighs {self.WEIGHT}."

13

14 class BoatFramework:

15 def __init__(self, engine, color, weight, length):

16 self._engine = engine

17 self.APPEARANCE = Appearance(color, weight, lengt\

18 h)

35. Refactoring Techniques 331

19

20 # ...

21

22 class Boat:

23 def __init__(self, engine, color, weight, length, pri\

24 ce):

25 self._boat = BoatFramework(engine, color, weight,\

26 length)

27 self.PRICE = price

28

29 def describe_appearance(self):

30 print(self._boat.APPREARANCE)

31

32 def describe_price(self):

33 print(f"The boat costs {self.PRICE}.")

34

35 # ...

Usually these two techniques shown here are difficult to implement
because the variables are used in many methods and it’s not clear
how they could be sorted in a better way. Furthermore when
breaking a class into smaller pieces it requires new names. This
may be a difficult task, but at the same time it is also an indication
whether the way you broke the classes appart makes sense. If you
can’t find a reasonable way you probably designed your class badly.

Splitting classes

One of the hardest tasks is splitting big classes into pieces. Here we
have a very small, but suboptimal class that I made deliberately
that bad. Here everything is implemented inside the Shopping

class. This ib bad, because for every comestible, you have to extend
the class. This violates the Open Closed Principle (OCP) [chapter
SOLID].

35. Refactoring Techniques 332

1 class Shopping:

2 def __init__(self):

3 self._apple_tracker = []

4 self._eggs_tracker = []

5

6 def get_shopping_items(self):

7 return self._apple_tracker + self._eggs_tracker

8

9 def add_apple(self):

10 self._apple_tracker.append('apple')

11

12 def add_egg(self):

13 self._eggs_tracker.append('egg')

14

15 shopping = Shopping()

16 shopping.add_apple()

17 shopping.add_egg()

18 print(shopping.get_shopping_items())

Instead you should have a class for each comestible and inside the
Shopping class, you have only one list for all different comestibles
at the same time. The different behavior is implemented inside ever
individual class, obeying the OCP. This allows you to simply add a
new comestible without changing the Shopping class.

Also testing this class may be hard. Possibly you’ll have to use a
mocking library to alter the functionality of some functions that are
implemented inside this class. This is a sign that the class is badly
designed.

35. Refactoring Techniques 333

1 from abc import ABC, abstractmethod

2

3 class Shopping:

4 def __init__(self):

5 self._shopping_basket = []

6

7 def add_item(self, item):

8 self._shopping_basket.append(item)

9

10 def get_shopping_items(self):

11 return [str(item) for item in self._shopping_bask\

12 et]

13

14 class ShoppingItem(ABC):

15 @abstractmethod

16 def __str__(self):

17 pass

18

19 class Apple(ShoppingItem):

20 def __str__(self):

21 return 'apple'

22

23 class Egg(ShoppingItem):

24 def __str__(self):

25 return 'egg'

26

27 shopping = Shopping()

28 shopping.add_item(Apple())

29 shopping.add_item(Egg())

30 print(shopping.get_shopping_items())

This is of course a very simple example. In reality the functions
may be muchmore complex than this. But still, I think it was worth
splitting up this class in many smaller classes because it can now
be extended much more easily.

35. Refactoring Techniques 334

For testing purposes, you can also create a FakeShoppingItem if you
want. This entire technique here we have already learned in the
section on Dependency Injection (DI).

Renaming

Even though renaming barely alters the structure of the code, it
should be done frequently. Not only for good code, but also for
legacy code. Finding good names is one of the most challenging
tasks in programming because assessing the quality of names is
very difficult. There are some general rules on how naming should
be done, yet it is still not easy at all. This leads to the fact that
there are many objects with suboptimal names. And as you write
some code, it may happen that you spot something for which you
happen to know a better name. Then rename this object. This is
the only way names improve over time. Don’t assume the author
of the code knew it better. You now have much more information
at hand that simplifies finding a good name.

Though you have to pay attention. People get used to names. If a
name for an object has become familiar to the entire development
team, you shouldn’t change it, even if you have a better name.
Renaming it would cause too much confusion. For this reason, it
is better to name central elements of your code at the beginning of
the development and not change them later on.

One possibility is to start with mediocre names initially and then
search for better names towards the end of programming a few
lines. Then, Copilot can also help you find better names.

Scratch refactoring [WELC p. 212]

In chess, there is a rule of thumb that suggests you should silently
communicate with your pieces during your opponent’s turn. You

35. Refactoring Techniques 335

should ask them where they would like to be and thus get a sense
of their preferred position. In programming, there is something
quite similar. Scratch refactoring is not about improving code; it
is only about getting an idea of how the code could look. Just
refactor as you like without worrying about bugs or similar issues.
Figure out how the code should look in an ideal scenario. But also
try to implement some of the edge cases to challenge your dream
implementation and understand its limitations. I like the concept
of scratch refactoring very much because it gives you an idea of
how the code could look instead.

Once you’re done refactoring, discard everything and do a regular
refactoring, attempting to implement the ideas you just acquired.
Pay attention to not simply reimplementing the code you envi-
sioned previously. You may have overlooked certain technical
details, and the solution from scratch refactoring may not turn out
as expected. After all, the scratch refactoring was just a dream…

Extract function

If I have a function or method that is too long or not cohesive
enough, I can replace some of the code with a newly created
function. This is one of the most important refactoring techniques
because excessively long functions are a common issue, and ex-
tracting functions is the primary method to manage them. If
there are not too many variables involved, the technique is fairly
simple. The biggest challenge is finding suitable names for the
newly created functions.

Let’s consider this very simple code snippet. We have already
observed that this violates the SRP since printing a string and
calling a function represent two different levels of abstraction.

35. Refactoring Techniques 336

1 def print_content():

2 # print some stuff

3

4 print("author: Marco Gähler")

5 print("********************")

6 print_content()

The solution is taking the explicit print statements into a dedicated
function and call this function instead.

1 def print_header():

2 print("author: Marco Gähler")

3 print("********************")

4

5 def print_content():

6 # print some stuff

7

8 print_header()

9 print_content()

For once, you are allowed to use copy-paste to create the new
function since the old code will be deleted anyway. Even better
is to cut (Ctrl+X) and paste the code snippet, but that’s a detail.

You can also utilize Copilot to extract this function. Just write the
command “move the print statements into a dedicated function,”
and Copilot will take care of the rest for you. As always, you should
pay attention to ensure that the solution is correct. In this case, it
happened to me that Copilot suggested an incorrect solution.

There is not much more to know about extracting functions than
what I just showed here. It is a simple yet crucial refactoring
technique. This is probably the most commonly used refactoring
technique besides renaming. The only thing you have to watch
out for is the variables used by the newly created function. If the
code is inside the class, you might consider making the function a

35. Refactoring Techniques 337

member function of the class as well. Otherwise, you may end up
having to pass too many arguments to the function. Though this
would be a sign of poor class design because the class has too many
member variables [chapter classes]. Youmay extract methods from
this class later on if needed.

Inlining functions is the opposite process of what we have just seen
and is rarely used. Replace a function call with the function body.
Apparently, this makes the surrounding function longer when the
copied function body has more than one line. This is generally
not desirable because most functions are already long enough.
Inlining functions only makes sense for one- or maybe two-line
long functions, or if you are planning to refactor the surrounding
function and split up the old function. One advantage of inlining
functions is that you don’t have to come up with a function name.
Though usually this isn’t a good sign if you don’t know how to call
a function.

Dependency Injector

As we have already seen, Dependency Injection (DI) is a very
helpful tool. Among other benefits, it allows us to inject mock
objects to test functionality that would otherwise be untestable. So,
the question is: Can we retrofit DI onto an existing class?

The answer is yes. And it is fairly simple. Especially in interpreted
languages, it’s super simple, though it is also more dangerous than
in compiled languages. In compiled languages, the compiler will
notify you if you have forgotten to update one of the function
calls to match the new signature. In interpreted languages, you
have to rely on your tests to find out if you forgot to adapt one of
the function calls. This is more dangerous because you may have
forgotten a function, and the code will fail in production.

Let’s assume we once again have our Car class containing an

35. Refactoring Techniques 338

engine.

1 class Engine:

2 def __init__(self, power):

3 self.power = power

4

5 class Car:

6 def __init__(self):

7 self.engine = Engine(power=100)

8

9 def drive(self):

10 print(f"Driving with power {self.engine.power}")

11

12 car = Car()

13 car.drive()

The Engine object should not be instantiated inside the Car con-
structor for several reasons. Most importantly, the constructor
should be as simple as possible. It shouldn’t create anything that
isn’t necessary. It is better to pass the Engine as an argument.
Instead, the Car constructor should look like this:

1 # ...

2

3 class Car:

4 def __init__(self, engine):

5 self.engine = engine

6

7 # ...

8

9 car = Car(Engine(power=100))

10 car.drive()

For more refactoring examples, I would like to refer the interested
reader to the book Refactoring [Refactoring, Improving the Design

35. Refactoring Techniques 339

of Existing Code, 2019]. It contains numerous examples and is an
excellent resource for learning how to refactor code. And, of course,
I recommend doing a lot of refactoring yourself in order to learn it.

Copilot

It seems as if Copilot sometimes struggles with code refactoring. At
times, it doesn’t find a reasonable refactoring suggestion. Though
with a little experimentation and providing Copilot with some
hints, it works out quite well. Here is an example:

1 def roman_number(number):

2 if number == 1:

3 return 'I'

4 elif number == 2:

5 return 'II'

6 elif number == 3:

7 return 'III'

8 # Code used for later:

9 # elif number == 4:

10 # return 'IV'

11 # elif number == 5:

12 # return 'V'

I commented out the last two cases that were suggested by Copilot.
Having only the first 3 cases and asking Copilot to refactor this
code, it makes the following suggestion:

1 # refactor this code to use a dictionary instead of i\

2 f/elif/else

3 return {1: 'I', 2: 'II', 3: 'III'}.get(n, 'Invalid nu\

4 mber')

35. Refactoring Techniques 340

This works out but it’s not quite what I wanted. After commenting
out the case for 4 and 5 and explicitly asking for a while loop, the
code looks as follows:

1 # refactor this code using a while loop

2 roman = ''

3 while number > 0:

4 if number >= 5:

5 roman += 'V'

6 number -= 5

7 elif number >= 4:

8 roman += 'IV'

9 number -= 4

10 elif number >= 1:

11 roman += 'I'

12 number -= 1

This is almost what I wanted, except that one could use a dict with
number-roman number pairs. Asking explicitly for using a dict, the
code looks pretty much how I wanted it to be.

1 # refactor this code using a dictionary

2 roman = ''

3 roman_map = {1: 'I', 4: 'IV', 5: 'V'}

4 while number > 0:

5 for key in sorted(roman_map.keys(), reverse=True):

6 if number >= key:

7 roman += roman_map[key]

8 number -= key

9 break

10 return roman

I particularly like the part with for key in sorted(roman_-

map.keys(), reverse=True): where Copilot makes sure that the
entries in the dict are sorted, even if the dict itself is not sorted as

35. Refactoring Techniques 341

it was the case before Python 3.7. In [chapter Testing] I used a list
with class objects to achieve the same result. But I have to admit
that the solution here is quite neat.

This code can be further refactored with the following command:

1 # refactor this code using a for loop

2 roman = ''

3 roman_map = {1: 'I', 4: 'IV', 5: 'V'}

4 for key in sorted(roman_map.keys(), reverse=True):

5 while number >= key:

6 roman += roman_map[key]

7 number -= key

8 return roman

As always, Copilot works best if you give it some step by step
instructions. It is not always able to find the best solution by itself.
Though it is still a great help for refactoring code.

36. Refactoring Legacy
Code

“To me, legacy code is code without tests.” - Michael Feathers
[WELC]

Up to this point, everything was great. We had no restrictions
whatsoever. We assumed we were working on a greenfield project.
I could tell you whatever I wanted. There were no restrictions
because of the existing code base. I told you to write unit tests,
and you started writing unit tests. Now, however, we will start
working with existing code bases. We will learn how to handle
legacy code: code without tests [WELC]. Or even worse, code
without interfaces.

So far, we have only refactored code that is covered by tests.
Refactoring code without tests would be too dangerous. But,
unfortunately, this is precisely the issue with numerous projects.
There are so many projects out there without tests. Due to global
variables, functions with side effects, complex constructors, and
missing interfaces, it is very challenging to write tests for them.
In these cases, you may start to feel afraid to make changes to the
code as you are supposed to do during refactoring. There’s just too
much that can break without testing. This is apparently a really
bad thing. No one likes to live in fear. In your own code, you can
prevent this situation bymeticulously testing all the code youwrite.
However, if you work on an existing project, you will have to face
the demons.

When you start working on a project with bad code, you might be
motivated to suggest a complete rewrite. Youmay do that, although
I do not recommend it. A complete rewrite is rarely an option.
It takes years, costs millions, and very often the final code is not

36. Refactoring Legacy Code 343

significantly better. Generally, it is better to improve the existing
code. You have identified something you want to enhance. You
write tests and start refactoring. This may seem tedious to you, but
you always have to consider that the code was written by many
programmers over many years. It will not be fixed in a fewmonths.

Refactoring untested code is usually a very hard task. There are
entire books about it [WELC], [Refactoring]. And if the code is
already pretty bad, refactoring becomes even harder. The most
common issues on the macro level are:

1. No tests
2. Obscure code
3. No time (or budget) to fix it

And on the micro level we have a few more indications that things
will get tough:

1. No interfaces
2. Functions with side effects and global variables
3. Huge classes and functions
4. Objects that are hard to construct
5. Inheritance chains

If you want to divide a large class into smaller parts, consider the
following approach. It has no tests, and you are uncertain about
the side effects it might have. This is bad because the functional
changes introduced are bugs. The only way to prevent these
changes is by having plenty of regression tests.

How can you refactor legacy code?

First of all, you have to change as little code as possible to imple-
ment tests.

1. Identify change points (“Seams”)

36. Refactoring Legacy Code 344

2. Break dependencies
3. Write the tests
4. Make your changes
5. Refactor

The difficult points are numbers 1 and 2. The rest involves textbook
refactoring. Though it will take time, especially when writing tests.

No Useful Interfaces

Any code always has at least two interfaces: the input and the
output. When one or both of them are a GUI, it becomes nearly
impossible to write functional tests for the software. Furthermore,
you can’t write unit tests if there are no internal interfaces. Without
tests, it is impossible to refactor and add interfaces. It is really bad,
but it’s not a lost cause. You can still try to refactor slowly. Though
it will be painful, and you will constantly have to watch out for
bugs. A salesperson will have to check your work constantly to en-
sure that you haven’t introduced any bugs. The entire refactoring
process will likely take years. Perhaps a complete rewrite is indeed
the better choice. I hope you never find yourself in this kind of
situation.

No Tests

Code without tests is one thing. One can still write them later on,
even though it takes much more effort than doing it right away.
The real issue is usually the low quality of the code. Code without
tests tends to be of low quality. While it may have some interfaces,
the classes are excessively large, making the instantiation of objects
difficult. This is one of the few cases where you are officially
allowed to cheat. You may change private methods to public in

36. Refactoring Legacy Code 345

order to test them. Once the refactoring is done, you should make
it private again. Though that may take a year or two. Once you
have some test coverage, you can break the classes into smaller
ones.

If you are working on an existing project, the test coverage may
be insufficient. This is a serious issue. Not only from a technical
point of view, but also from a political perspective. Due to the low
test coverage, one might introduce bugs when refactoring. And the
last person to touch the code becomes responsible for it because
who else is supposed to know how it works? So it becomes yours
to support. However, this is not what you intended. You only
wanted to improve it, not own it. Ultimately, people are afraid
of refactoring the code because they will become responsible for it,
not somuch because it would be difficult. Therefore, the developers
stop refactoring, and the code decays even faster than it did before.

One trick to avoid this political issue is the so-called “onion layer
code.” Instead of fixing a piece of code in place, you can write a
wrapper around it and address all the issues inside the wrapper. By
doing this, you avoid taking ownership of the code, yet you can
still fix bugs, etc. However, this comes at a cost of having all these
fairly useless wrapper layers around your code, where you could
have fixed the code properly instead. Don’t let politics get in the
way of good code.

Extremely Long Functions

Let’s be honest. A function, or even worse, a method of about a
thousand lines is an absolute nightmare. It lacks interfaces. No one
will ever understand it with all its corner cases. There are so many
variables present that it is difficult for anyone to comprehend the
state your code is in. It is absolutely impossible. No one is ever
going to touch such a function. You might be able to make some
minor adjustments, but you are not addressing the core issue. The

36. Refactoring Legacy Code 346

only way to truly change it is through a complete rewrite. The
hardest part is obtaining the specification of what the function has
actually done so far. If bugs are absolutely not allowed, you’d better
leave the function as it is. Just work your way around it and accept
the fact that at some point you’ll have to rewrite it.

Seams

Writing tests can be a noble endeavor, but it is not always easy.
As I explained previously, the ease with which you can write tests
largely depends on the quality of your code. In order to write tests,
you need something tangible to work with. Michael Feathers refers
to this as a “seam.” “A seam is a place where you can alter behavior
in your programwithout editing in that place.” [WELC] Vice versa,
you can edit it elsewhere, at the so-called enabling point.

There are several different ways to implement seams. The best
seams are interfaces using dependency injection. They are very
easy to deal with and resemble typical code. Just create a new
implementation of the interface or inject it, and you are done.

Some of the seams described in [Working Effectively with Legacy
Code] alter the behavior at the compiler level, either through
the linker or the preprocessor. Needless to say, implementing
such fancy seams is a rather desperate measure. Such techniques
strongly resemble black magic and should be avoided. And they
are not possible when programming in Python.

The most common scenario involves passing function arguments.
It is not mentioned in Working Effectively with Legacy Code
and the following code is simply a less effective version of using
dependency injection, but it still serves as a seam.

36. Refactoring Legacy Code 347

1 def f(debug):

2 if(debug):

3 # ...

4 else:

5 # ...

However, passing a boolean as done in the code above is generally
considered bad design. It is much better making the choice earlier
on and passing on an object by dependency injection. The code
above should be used at the highest level and create objects that
will be used with dependency injection. For example:

1 import sys

2

3 class Reader:

4 def read(self):

5 print("reading")

6

7 class DebugReader:

8 def read(self):

9 print("debug reading")

10

11 def main(reader):

12 reader.read()

13

14 if __name__ == "__main__":

15 if "debug" in sys.argv:

16 reader = DebugReader()

17 else:

18 reader = Reader()

19 main(reader)

By doing this, you will never end up with a boolean flag that you
need to resolve later on. This is amuch better design. Just create the
DebugReader immediately and pass it as a function argument. The

36. Refactoring Legacy Code 348

only potential issue is that you might have to pass several debug
objects around instead of just one boolean variable. In the unlikely
event that you havemultiple debug objects (typically, there are very
few), you can organize them within a data class.

Now, in this case, the seam is where the read function is being
called, and the enabling point can be anywhere from the command
line call of this program to the function inside which the read

function is called. In our case, we can write a test and provide a
different reader to the main function. Thus, we have a great deal
of flexibility when it comes to controlling our code. This is a good
seam.

Problems with Missing Enabling Points

Usually, just passing a number or a string is not sufficient to
significantly alter the behavior of the function. It only yields a
slightly different result. Variables generally do not alter the control
flow of your code. The only two things that should significantly
alter the behavior of your code are booleans and DI objects. And
since you are not supposed to use booleans, you are back to using
DI, as explained above.

The piece of code you are holding in your hands, between the
enabling point and the seam, may be too large, and you may not
have a clear idea of what you should test exactly. In the extreme
case, the only tests you can write are functional tests. This is the
issue of missing interfaces. Writing tests along with, or even before,
the code forces you to define enabling points and seams that are
close together. It forces you to write interfaces, thereby promoting
good code quality.

If your code doesn’t have any interfaces or an API that you can use
to write your tests, you are completely screwed. I’m sorry, there’s
no other way to say it. And no, I’m not exaggerating. Spaghetti
code without tests can be an enormous issue and it appears that

36. Refactoring Legacy Code 349

there is no clear solution. A friend of mine was developing gas
turbines. One individual developed software that could generate a
full CADmodel of a turbine. Now, the problemwas that this person
retired, and the code was a 15,000-line-long mess. The company
paid millions in a desperate attempt to refactor the code but failed.
In the end, they just wrote a wrapper around this piece of code and
left it as is.

Sketches

Creating sketches and diagrams can help you find ways to refactor
your code. This doesn’t have to be UML diagrams. It can be
anything that helps you understand your code. It can be a form
of temporary behavior or what Feathers referred to as a “scratch
refactoring”. Essentially, a draft code that provides a rough idea of
how the final code might look, without addressing all the intricate
details that make real refactoring challenging. These tools help you
better understand your code and make it easier to write the actual
refactoring code.

// Add the temporal graph from Evans? which one? nonlinear
growth?

[WELC p.200(?)]

How do I get the Code under Test?

This is a difficult topic. First of all, you have to be aware of the
magnitude of the problem you are facing. In well-written software,
the test code is at least as long as the production code. In highly
regulated environments such as the airplane industry, it may take
several times longer than that. If youwant to write tests for a longer
piece of software that has not been tested at all, it will most likely

36. Refactoring Legacy Code 350

take years. So, achieving high test coverage is generally not feasible.
You’ll have to be more pragmatic than that.

What Tests should I write?

The tests you should write depend mostly on the code you have.
In most cases, it is difficult to write tests because of the absence
of interfaces. You’ll have to work with whatever you have. Of
course, it would usually be best to write unit tests. However, that
might not be possible if classes cannot be instantiated, methods are
excessively long, etc. It might be the only option to write functional
tests using the API of your software. As we have learned in the
chapters on testing, this is not ideal. Functional tests take too
long to execute. But beggars can’t be choosers. At least you have
something to work with. Lack of an API to work with is even more
challenging. In this case, you are completely screwed. Writing
onion code, which consists of wrappers around existing software,
may be the only option. This limitation significantly hinders your
ability to implement new features.

Sprout Method

Let’s say you have a method or function that you cannot test, but
you need to add some functionality. How do you do that without
deteriorating the code quality any further? The solution is to add
a new function or method that you can test and call from the old
function. This is called a sprout method (or function) [WELC p.
58].

Assume we have the following code that we cannot test for some
reason. In reality, it would, of course, be much more complicated.
I have simplified it enough to create a readable example.

36. Refactoring Legacy Code 351

1 def post_entries(transactions, entries):

2 # ...

3 for entry in entries:

4 entry.post()

5 transactions.get_current().add(entries)

Now we only want to add the valid entries to the transactions and
execute the post function. It seems as if we’d have to create a
temporary list and add an if statement.

1 def post_entries(transactions, entries):

2 # ...

3 valid_entries = []

4 for entry in entries:

5 if entry.is_valid():

6 entry.post()

7 valid_entries.append(entry)

8 transactions.get_current().add(valid_entries)

This, however, makes the untestable code even more complex.
Instead we can create a new function that extracts the new func-
tionality. This new function can be tested, so you can apply TDD.

1 def test_get_valid_entries():

2 entries = [Entry(is_valid=True), Entry(is_valid=False\

3), Entry(is_valid=True)]

4 valid_entries = get_valid_entries(entries)

5 assert len(valid_entries) == 2

36. Refactoring Legacy Code 352

1 def get_valid_entries(entries):

2 valid_entries = []

3 for entry in entries:

4 if entry.is_valid():

5 valid_entries.append(entry)

6 return valid_entries

7

8 def post_entries(transactions, entries):

9 # ...

10 valid_entries = get_valid_entries(entries)

11 for entry in valid_entries:

12 entry.post()

13 transactions.get_current().add(valid_entries)

So, we managed to add only one additional line of code to the
original function. All the other code was placed inside the get_-

valid_entries function. This new function is now also unit tested.

Sprout class [WELC p. 62]

// WIP

If you have a class that is becoming too big, you can extract some
of its functionality into a new class. This is called sprouting a class.
The new class is typically a member of the old class. This is a very
simple refactoring technique. Just ensure that the new class is only
loosely coupled with the old class. Otherwise, you might have to
pass too many arguments to the new class. If there are too many
arguments that you have to handle, you should perhaps reconsider
your class design and rewrite it to reduce coupling.

// I think there is still quite a bit more to write here. Maybe add
some more examples?

// “When you use Sprout Method, you are clearly separating new
code from old code. Even if you can’t get the old code under test

36. Refactoring Legacy Code 353

immediately, you can at least see your changes separately and have
a clean interface between the new code and the old code. You see
all of the variables affected, and this canmake it easier to determine
whether the code is right in context.” - Michael Feathers [WELC]

// make an example [https://www.codewithjason.com/taming-
legacy-code-using-sprout-method-technique/]

1. Write a test around the buggy area—expiration date
validation—and watch it fail

2. Extract the expiration date code into its own method so we
can isolate the incorrect behavior

3. Fix the bug and watch our test pass

There are many more techniques how to refactor code that don’t
have tests. I recommend the bookWorking Effectively with Legacy
Code [WELC] for further reading. I already applied some of the
techniques explained there without even knowing about them.

37. Performance
Optimization

“Premature optimization is the root of all evil.” - Donald Knuth

No Optimization Needed

Performance is one of the most overestimated topics in program-
ming. This has historic reasons. Computers used to be extremely
slow and expensive. Therefore, it was worthwhile to spend a sig-
nificant amount of time enhancing every aspect of your algorithm.
Back in the day, low-level languages like Fortran or even Assembler
allowed you to do so. But the performance of computers has
been growing exponentially for the last 50 years, while the price
of computers has dropped considerably. Modern programming
languages, such as Python, are no longer prioritizing performance.
But rather on usability. Simply because it is more important to
write readable code than to write fast code.

As we have learned, the primary goals of a software engineer are
to create value for the customer by writing code that is easy to
understand, correct, and well covered with tests. Performance is
not a primary objective. It is hardly ever an issue if the code
is not optimized for performance. Hardly anyone cares about
optimization anymore. Nowadays, computers are fast enough to
runmost standard programs at a reasonable speed without the need
for optimization.

I’d like to point out that the coding style I recommend does not
necessarily lead to optimized performance. In my explanations, I

37. Performance Optimization 355

didn’t care about performance until now. Instead, I was recom-
mending coding style for readability and reusability. The problem
is that all this polymorphism that I recommended requires lookups
in the so-called v-table, and this is slow. There are YouTube videos
[https://youtu.be/tD5NrevFtbU] that explain these things in great
detail. So, yes, the code I recommend you to write is comparatively
slow. But it does not matter. When do you need millions of
function calls for this slow polymorphic code? Probably never. It
is unlikely that the code I recommend you to write will ever be the
bottleneck of your software.

One issue with performance optimization is the fact that modern
processors have many cores. In order to use them, you have to
parallelize your code. This task can be tedious, and even if you
complete it, you may not always gain anything. The overhead of
orchestrating results between the different cores may be signifi-
cantly slower than the single-threaded version of your code.

Optimization Maybe Needed

Let’s say you start developing an application that you believe
requires high performance. You may be unsure about when to start
optimizing the code. Right from the beginning? Should you plan
your algorithms to be faster? How should you proceed?

First of all, it is not recommended to optimize the code at all. In fact,
it is best to ignore the topic of performance for the time being. Write
your code using the typical test-code-refactor work cycles [section
TDD]. When done well, the result will be code that is modular,
stable, easy to understand, and well-tested. Code that meets all
your requirements, except for performance.

You may have felt the need to write highly optimized code to meet
the performance requirements. But you didn’t know for sure. And
now is the time to test your assumption. If you need to execute your

37. Performance Optimization 356

code just once and it requires 2 days to complete, consider running
it during the weekend. Spending hours on optimization would be
a waste of time.

If your code takes an hour to run and you use it every day, it is
worth getting a profiler to check the bottlenecks of your code. Most
code you encounter typically has very few bottlenecks. Usually, it
involves complex calculations on a large data structure that scales
worse than O(Nlog(N)) [https://en.wikipedia.org/wiki/Big_O_nota-
tion]. This is going to be the one and only point where you’ll have to
optimize. As you have written great code, it is very easy to identify
this bottleneck using a profiler. For example, it turns out to be a
self-written Fourier transformation operating on a list with 10,000
elements. As you start reading through the code, you realize that
the algorithm you have implemented scales with O(N^2). Such poor
scaling is typically unacceptable. When seeking advice, you turn
to the internet. You can find Fourier transform libraries that scale
with O(N log(N)). As your code is well-structured, you can simply
remove your custom Fourier transform function call, adjust your
data structure slightly, and utilize the library you discovered. Now
your code runs within seconds. Done. You won’t have to worry
about anything else.

Optimizing Certainly Needed

Finally, there are indeed some cases where you have to develop
the software from scratch and focus on optimization. But these
cases are very rare. These are mostly simulation software, games,
websites containing a large amount of data, or infrastructure code
for huge server farms where not only performance but also energy
consumption is a major concern. If the code can be parallelized,
it will become much more complicated due to the additional
complexity involved in designing data structures and algorithms.
As a very rough rule of thumb, it takes approximately twice the

37. Performance Optimization 357

amount of time to write parallel (or distributed) code compared to
linear code, but it can easily be much more than that. There is a
lot to learn if you want to write high-performance code. But you
won’t be alone. You’ll likely be working in a team where every
team member knows much more about parallel programming than
I do.

There aremany small things you can do to optimize your code, such
asmanual loop unrolling. Keep your hands away! The performance
gains are negligible. When working with a compiled language, the
compiler can optimize such thingsmuch better than you can. Major
algorithms should be the focus of improvement since they typically
account for 90% of the runtime. Optimizing the remaining 10% is
usually not worth it.

Always keep inmind that codewrittenwith a focus on performance
rather than readability is always very challenging to maintain. Due
to the complexity of the code, it becomes very hard to understand!

Part 8: Miscellaneous

38. Comments
“Code is like humor. When you have to explain it, it’s bad.” – Cory
House

As a very short rule of thumb, comments should not explainwhat a
piece of code does, butwhy. What can be understood by examining
the code. With the why, this is not possible. Was the code written
in response to a specific ticket? Add a comment and with the ticket
number.

Comments are a double-edged sword. While they may be useful
at times, they can also be a liability. You always have to make
sure you keep them up to date as you would with any piece of
documentation. Additionally, comments tend to be a remedy for
fixing bad code. And this is certainly not the intended purpose of
comments.

Bad comments

“Comments? Don’t.”

“Why?”

1 def add(a,b):

2 # This function returns the sum of the two arguments

3 return a + b

I’ve seen similar comments before. Apparently, the programmer
thought it was a good idea to write this comment.

I do not share this opinion. In my opinion, this is a useless boiler-
plate comment. Read the function name. It precisely explains the

38. Comments 359

function’s purpose. If you are unsure, refer to the implementation.
This is precisely what distinguishes good code. When you read
a function name, you know what it does. Good code is self-
documenting. There is barely any need for additional comments.
This comment is a violation of the SRP. It’s a redundant explanation
of the code’s functionality.

“Yes, but it’s only one line of comment. It can’t hurt us,” you might
say.

“NO!”

Sorry, I just lost my temper. I shouldn’t be so harsh with you.
Many experienced programmers don’t know, so why should you?
I have to tell you that you are wrong. You can’t believe how wrong
you are. Maybe I haven’t made myself clear enough so far. This
comment is an absolutely useless liability. It makes a claim that
will not always be true. The code will change as code always does.
But the comment may be forgotten. Unlike function definitions or
variable names, you cannot enforce that a comment remains in its
correct location. You will eventually end up with a comment that is
simply incorrect. It will confuse everyone who works on this code.
It will cost time.

Not convinced? Do you believe you won’t encounter these issues
because you work meticulously?

“Ha ha. NO!”

Now you’re certainly wrong this time. By now, you should know
better. This is precisely what I’m trying to teach you throughout
this entire book. You are human. Every human makes mistakes.
I make mistakes, you make mistakes. It’s inevitable. Accept your
fate and learn how to deal with it. Code is good if you can make
as few mistakes as possible. Removing unnecessary comments is
essential. They violate the third rule of software engineering. Such
comments are an unnecessary source of bugs.

You want to become a software engineer. So, stop using the English

38. Comments 360

language and start reading code instead. The code contains the
absolute truth. Not the comment.

Here is an example from the book [The Art of Readable Code,
Boswell & Foucher]. The book has some good ideas, but there are
some examples that could be further improved. The original code
was written in C++ and I translated it into Python as pseudo code.

1 class FrontendServer:

2 view_profile(request)

3 open_database(location, user)

4 save_profile(request)

5 extract_query_param(request, param)

6 reply_OK(request, html)

7 find_friends(request)

8 reply_not_found(request, error)

9 close_database(location)

Undoubtedly, this code is bad. It is very hard to read. The code
lacks any visible structure.

The authors of this book organized the code, added comments, and
eventually produced the following result:

1 class FrontendServer:

2 # Handlers

3 view_profile(request)

4 save_profile(request)

5 find_friends(request)

6

7 # Request/Reply Utilities

8 extract_query_param(request, param)

9 reply_OK(request, html)

10 reply_not_found(request, error)

11

12 # Database Helpers

38. Comments 361

13 open_database(location, user)

14 close_database(location)

The code has certainly become much more readable. But this
refactoring can be taken one step further. Adding these comments
does not solve the fundamental issue. The class should be divided
into three subclasses, with one parent dataclass containing the class
instances. This logically separates the different parts of the class.
The comments are just a workaround for suboptimal code.

Here is my rough suggestion on how to rewrite the code above.

1 from dataclasses import dataclass

2

3 @dataclass

4 class FrontendServer:

5 profile: Profile = Profile()

6 request_handler: RequestHandler = RequestHandler()

7 database_handler: DatabaseHandler = DatabaseHandler()

8

9 class Profile:

10 view(request)

11 save(request)

12 find_friends(request)

13

14 class RequestHandler:

15 extract_query_param(request, param)

16 reply_OK(request, html)

17 reply_not_found(request, error)

18

19 class DatabaseHandler:

20 open_(location, user)

21 close(location)

22

23 # example usage of this code:

38. Comments 362

24 server = FrontendServer()

25 server.profile.view(request)

The resulting code is once again longer than the initial version.
But it is much better structured, and there is no need for any
comments. Note how we were also able to simplify certain parts of
the code. For instance, we now define the function view instead of
view_profile. The profile part of the function name is now clear
due to the context within the Profile class or the function call as
profile.view.

Here is another example from the same book. It suffers from a
similar problem: the authors attempted to enhance the code by
adding comments rather than improving the code itself.

This is the original code.

1 # Import the user's email contacts, and match them to use\

2 rs in our system.

3 # Then display a list of those users that he/she isn't al\

4 ready friends with.

5 def suggest_new_friends(user, email_password):

6 friends = user.friends()

7 friend_emails = set(f.email for f in friends)

8 contacts = import_contacts(user.email, email_password)

9 contact_emails = set(c.email for c in contacts)

10 non_friend_emails = contact_emails - friend_emails

11 suggested_friends = User.objects.select(email__in=non\

12 _friend_emails)

13 display['user'] = user

14 display['friends'] = friends

15 display['suggested_friends'] = suggested_friends

16 return render("suggested_friends.html", display)

After the refactoring suggested in the book, the code is already
much more readable. But once again, the code should not be
commented. It should be refactored.

38. Comments 363

1 def suggest_new_friends(user, email_password):

2 # Get the user's friends' email addresses.

3 friends = user.friends()

4 friend_emails = set(f.email for f in friends)

5

6 # Import all email addresses from this user's email a\

7 ccount.

8 contacts = import_contacts(user.email, email_password)

9 contact_emails = set(c.email for c in contacts)

10

11 # Find matching users that they aren't already friend\

12 s with.

13 non_friend_emails = contact_emails - friend_emails

14 suggested_friends = User.objects.select(email__in=non\

15 _friend_emails)

16

17 # Display these lists on the page.

18 display['user'] = user

19 display['friends'] = friends

20 display['suggested_friends'] = suggested_friends

21

22 return render("suggested_friends.html", display)

Here is my suggestion.

1 def suggest_new_friends(user, email_password):

2 friend_emails = get_friends_emails_of(user)

3 contact_emails = import_email_addresses_from(user, em\

4 ail_password)

5 non_friend_emails = contact_emails - friend_emails

6

7 suggested_friends = find_suggested_friends(non_friend\

8 _emails)

9

10 dict_items = create_dict(user, friends, suggested_fri\

38. Comments 364

11 ends)

12 return render("suggested_friends.html", dict_items)

13

14 def get_friends_emails_of(user):

15 return set(f.email for f in user.friends())

16

17 def import_email_addresses_from(user, email_password):

18 contacts = import_contacts(user.email, email_password)

19 return set(c.email for c in contacts)

20

21 def find_suggested_friends(non_friend_emails):

22 return User.objects.select(non_friend_emails)

23

24 def create_dict(user, friends, suggested_friends):

25 items = {}

26 items['user'] = user

27 items['friends'] = friends

28 items['suggested_friends'] = suggested_friends

29 return items

This time, the code only became slightly longer compared to other
refactoring examples. But at the same time, it is much more
readable. You can understand its functionality simply by looking
at the top-level function suggest_new_friends. You don’t have to
read the details of the function. You can read the function names to
understand their purpose. This is what makes code readable. Not
the comments.

At times, it is very difficult to explain code using code alone. So,
there is, of course, the temptation to use a comment to make it
clearer. As in the following example, also from the book [The Art
of Readable Code]:

38. Comments 365

1 // Rearrange 'v' so that elements < pivot come before tho\

2 se >= pivot;

3 // Then return the largest 'i' for which v[i] < pivot (or\

4 -1 if none are < pivot)

5 int Partition(vector<int>* v, int pivot);

I must say, I don’t like this comment. It is very difficult to
understand. And as always, providing a comment to explain what
code does is suboptimal. Now, the first issue I see with this function
is that it performs two tasks simultaneously. It orders the elements
of the vector and returns the index of the last element that is smaller
than the pivot. It has a mutable argument and a return value
simultaneously. This is a violation of the SRP. The function should
probably be split into two parts.

Additionally, there is something else that can explain code: unit
tests. The test cases act as examples of how the code is supposed
to be used and serve as an example at the same time. This is often
more helpful than a difficult-to-read comment.

Commented Out Code

Another thing you might have seem somewhere is commented out
code. Someone was developing a feature. Maybe he was replacing
some code and wasn’t sure how to implement the new version.
So, he commented out the old code and started implementing.
He somehow didn’t understand all the details, but at some point,
everything seemed to work. He knew that he was guessing more
than writing structured code. He knew his work was really bad.
Therefore, he decided to leave the old code in the repository and
just commented it out, right beside the new code.

Commenting out code is absolutely dreadful. This is one of the
candidates for the worst programming practices. What are you
supposed to do with commented out code? Everyone reads it.

38. Comments 366

Nobody knows how to deal with it. It’s just causing confusion
and wasting everybody’s time. If we only had a tool to browse
the history of the code… Something like Git…

Never use comments (or dead code) for that purpose. You have my
permission to delete any commented-out code that you ever see.
You may use this book as proof if needed.

TODO Comments

Another bad habit is TODO comments. When you implement a
feature, you are responsible for ensuring that the implementation is
ready to be merged into the master branch. It’s ready to be merged
when there is nothing important left to be done that would justify
a TODO comment. Make sure you never merge any TODOs into
the master branch. These tasks only lead to confusion, and there is
never enough time to complete them. You should never implement
a feature without a corresponding ticket. Additionally, for code
refactoring, there is no need for a TODO comment. Therefore, once
again, make sure you never merge any TODO comments into the
master branch.

During the development of a feature, it is acceptable to use TODO
comments. It might help you to organize your work. Just make sure
to remove all the TODO comments before merging your changes
into the master branch.

Comments Replacing Code

Introducing numerous small functions can somewhat hinder read-
ability. It involves keeping track of and navigating through the
function calls. Though this cost is very low if the functions are
named properly. If all the functions perform as described, you can
simply read the function names to understand what the code does.
This is what makes code readable. Not the comments.

38. Comments 367

As a summary, I can say that all the small functions come with a
price to pay. But adding comments to explain the code is not the
best solution.

Useful comments

So much about why not to use comments. Now let’s discuss
situations where using comments is entirely appropriate.

I have explained that you should not use comments for anything
that could (or should) be explained by the code itself. Vice versa,
this means that comments are allowed to explain things that you
cannot express in code. For example, you can add links to the source
of a code fragment, library, or an explanation of an algorithm. It
may also be useful to use comments in the interface of a library or
API when using documentation software. Comments are typically
used at the beginning of the file to include the boilerplate copyright
statement.

Requirements

A very legitimate use of comments is to document requirements.
The code has to be written this way due to certain requirements.
Requirements are something that cannot be explained in code.
They are usually written in a natural language. Despite this,
they are still highly important for the software. At times, the
requirements are the only thing that can explainwhy a certain piece
of code looks the way it does. And the only way to explain this is
by using comments. Please add the ticket number to the comment,
or even better, copy the requirement text into the comment as the
ticket may be edited later on.

Usually, the requirements are also expressed in an acceptance test.
And I hope you do write acceptance tests. But acceptance tests are

38. Comments 368

not sufficient. They are not visible in the code. You have to search
for them. It is unclear which acceptance test corresponds to each
line of code. Therefore, comments are the only way I can think of
to connect the code to the requirements.

How to write comments

Just like code, comments should be concise and meaningful. In
the following example, we have the opposite. What does “it” in
the following sentence mean? Please avoid writing ambiguous
sentences. [The Art of Readable Code]

1 # Insert the data into the cache, but check if it's too b\

2 ig first

better:

1 # If the data is small enough, insert it into the cache.

Docstring

You may use docstring tools, such as Sphinx in Python, for auto-
matically generating documentation. However, docstrings should
only be used for external documentation. Never use docstrings for
internal purposes. Why should you read a docstring documentation
if you can read the source code and all its comments?

For using docstrings as documentation for external users, com-
ments are also very useful. Furthermore, when commenting on
external APIs using docstrings, completely different rules apply
than for internal comments. When documenting an API, it is
crucial to comment on the what rather than the why. The user
doesn’t have access to the code, or at least he’s not supposed to read

38. Comments 369

it. So he solely relies on the docstring comments. Therefore, you
have to comment what your functions and classes do, and explain
how to use them. Possibly by adding examples. The why, on the
other hand, is not important at all.

As a short summary: Docstrings are very useful for documenting
your external APIs, but not for internal code. Docstrings should
comment on the what and not the why.

Commenting magic numbers

Here we have an example of poorly written code, this time in C++. I
found it in [The Art of Readable Code]. The authors correctly state
that this code is hard to understand and I suggest some changes on
their solution. Note that this example is in C++ because one of the
suggested solutions doesn’t work in Python.

1 connect(10, false);

This code is bad as it is very hard to understand what 10 and false

exactly mean. You’d have to look up the function definition to
understand it.

Copilot suggests to improve the code by adding a comment at the
end of the line. Honestly, this is a pretty bad solution.

1 connect(10, false); // timeout_ms = 10, use_encryption =\

2 false

The suggestion in the book was adding the comments inside the
function call. This is possible in C++ but it’s not a good solution.
It’s an attempt to make bad code better by commenting it.

38. Comments 370

1 connect(/* timeout_ms = */ 10, /* use_encryption = */ fal\

2 se);

In my opinion, this solution is still far from optimal - it uses
comments.

There are two better solutions to this problem. In Python, C++20,
and most other modern programming language, keyword argu-
ments are supported.

// check that this is correct

1 connect{.timeout_ms=10, .use_encryption=false};

The other solution is creating intermediate variables. The function
arguments used here are magic numbers that have to be avoided.

1 int timeout_ms = 10;

2 bool use_encryption = false;

3 connect(timeout_ms, use_encryption);

Here I didn’t even have to type anything as Copilot was able to
suggest the correct solution.

Summary

Use comments only for things that cannot be made apparent by the
code itself, yet you think it’s still very important. Comment the
why and not the what. If you write docstrings, it’s the other way
around. Comment the what, rather than the why.

38. Comments 371

Copilot

Copilot is not yet able to write more than boilerplate comments.
The following comment was created by the document function of
Copilot Labs. Copilot makes the mistake to comment the what.
Apparently there is no way for Copilot to find out why you write
some code. Therefore, I would recommend Copiliot only to write
docstrings.

I find it very remarkable that Copilot is able to write such a
comment, however it is still fairly useless.

1 def roman_number(number):

2 # The roman_map dictionary is a lookup table that map\

3 s numbers to

4 # roman numerals. It is used by the to_roman function\

5 to convert

6 # numbers into roman numerals.

7 roman_map = {1: 'I', 4: 'IV', 5: 'V', 9: 'IX', 10: 'X\

8 '}

9 roman = ''

10 for key in sorted(roman_map.keys(), reverse=True):

11 while number >= key:

12 roman += roman_map[key]

13 number -= key

14 return roman

39. Logging
// this chapter is very short. Merge it with another chapter?

The basic idea of logging is to provide feedback on the steps that
your software executed. It might help you find bugs. Now this
sounds great, but in reality, there are several things to consider.

• The most obvious drawback is that logging requires time to
be implemented. It’s not a huge amount, but it may add up.

• Logging pollutes your code, similar to comments.
• Logging is typically unnecessary. Most code is deterministic.
If you run the same code twice, it will produce the exact
same results, with minor differences due to finite precision
rounding errors. You don’t need the logs. Run the code with
the same settings as the user did and inspect your code using
a debugger.

• If you struggle to find bugs in your code, you should focus
on improving its quality instead. Simplify the structure and
write unit tests. You will have fewer bugs, and they are easier
to find.

At the same time, there are some cases where you can consider
using a logger.

• It may be useful for non-deterministic software. For exam-
ple, if you have several programs that communicate asyn-
chronously with each other, such as in microservices. Race
conditions may occur that you hadn’t considered. Depending
on the temporal order of the messages being sent. A logger
can help you trace back to the source of a bug. Though finding
such bugs is challenging, even with the best logger. You may
be feeling overwhelmed by the volume of log files.

39. Logging 373

• In a GUI the logger could store all the actions performed by
the user. This may also be helpful if the user encounters a
bug.

• Finally, a logger may be helpful for the user send in auto-
generated error reports if something goes wrong. Users can
simply click a button to submit an error report containing
all relevant data, eliminating the need to manually write the
report themselves. This may be very useful as errors are
almost inevitable, and the users are a very helpful group to
test your software. As long as the bugs are not too subtle or
too serious.

40. Data files
There are several file formats available for saving data or using
them as an interface. A lot of people apparently don’t even know
the most important ones, so I would like to give you a very short
introduction.

The file formats that I have used so far include CSV, JSON, XML,
HDF5, and databases. Along with some custom file formats. There
are, of course, many more such as YAML, TOML, etc. But for the
sake of brevity, I won’t explain those. The file formats mentioned
here are sufficient to complete your work, and it won’t require
much effort to learn other file formats if necessary.

CSV

Comma Separated Values (CSV) is probably the simplest and one of
themost common file formats. You can save numbers by separating
them with commas or any other character you prefer. It won’t get
any easier. But this is also one of the weaknesses of CSV. In some
natural languages, such as German, the comma character is used as
the decimal separator. Thus, you cannot use a comma to separate
different values as well. This overload of the comma character
could lead to significant issues when reading a CSV file.

There is no standard for CSV files, so you can format them however
you like. And that’s at the same time the downside of it. People do
whatever they want, and for every file, you have to write a new
piece of code to read the data. Saving auxiliary data in CSV files is
quite challenging. CSV saves only plain, unstructured lists.

Long story short: CSV is the file format commonly used by those

40. Data files 375

who are not familiar with more advanced options, such as JSON,
for example. Or someone who works with Excel.

Here is an example code snippet demonstrating how to read a CSV
file with two columns separated by commas. Lines starting with #

are comments:

1 def is_comment(line):

2 return line.startswith("#")

3

4 def read_csv(filename):

5 with open(filename) as file:

6 x = []

7 y = []

8 for line in file:

9 if is_comment(line)

10 continue

11 variables = line.split(",")

12 x.append(float(variables[0]))

13 y.append(float(variables[1]))

14 return (x, y)

Copilot

Copilot seems to be getting along with csv files quite well. Though
I would have expected the data to be saved in columns instead of
rows. But as I already said, there is no real standard for CSV files,
thus such things have to be specified to Copilot.

1 x = [1,2,3,4]

2 y = [5,6,7,8]

3 # write x and y to a csv file called 'data.csv'

This prompts the following code:

40. Data files 376

1 with open('data.csv', 'w', newline='') as file:

2 writer = csv.writer(file)

3 writer.writerow(['x', 'y'])

4 for i in range(len(x)):

5 writer.writerow([x[i], y[i]])

Besides the forgotten import csv, the code does pretty much what
it should.

JSON

The JavaScript Object Notation (JSON) file format is probably one
of the best file formats for everyday purposes. The libraries are
very user-friendly. It can save any data structure you want and
is extremely widespread and thus supported. There are libraries
available to automate the parsing of JSON files for all major
programming languages. The output data structure consists of a
combination of nested maps and arrays. It won’t get any easier to
read a file into data.

Once you use JSON in a more serious project, you might want to
consider using a schema to validate your files for accuracy. You
may use different schemas for different versions of your interface.
Before you manually write a schema, there are tools available to
assist you. You only have to ensure that your JSON file contains all
possible fields to obtain a complete schema.

Thanks to schemas, JSON is also a meta language. It is possible
to define a general pattern for how the JSON file should look. This
defines a standard that enables easy file exchange between different
projects.

The following code creates a JSON file:

40. Data files 377

1 import json

2

3 def write_json(filename, data):

4 with open(filename, 'w') as f:

5 f.write(json.dumps(data, indent=4))

6

7 if __name__ == "__main__":

8 data = {'x': [1,2,3], 'y':[4,5,6]}

9 write_json("temp.json", data)

Meanwhile this code here reads out the data.

1 import json

2

3 def read_json(filename):

4 with open(filename) as f:

5 return json.load(f)

6

7 if __name__ == "__main__":

8 data = read_json("temp.json")

9 print(data['x']) # prints [1,2,3]

10 print(data['y']) # prints [4,5,6]

As you can see, working with json files is much easier and less error
prone than working with CSV files. The underlying data structure
is a dict, which is a pretty bullet proof way to workwith data. There
is hardly a way to introduce unnoticed bugs.

Copilot

Reading and writing json files using Copilot works out pretty well.
Upon writing the following code

40. Data files 378

1 a = [1,2,3]

2 b = [4,5,6]

3 # write a and b to a json file called 'data.json'

Copilot makes the following suggestion:

1 import json

2 with open('data.json', 'w') as f:

3 json.dump({'a':a, 'b':b}, f)

Also when reading a json file, the suggestion of Copilot is quite
sound. Following the comment

1 # read the json file into a and b

Copilot makes the following suggestion:

1 with open('data.json', 'r') as f:

2 data = json.load(f)

3 a = data['a']

4 b = data['b']

Thus, one can say that Copilot enables us to save timewhenwriting
code and conserving mental energy when working with JSON files.

XML

The eXtensible Markup Language (XML) is very similar to JSON.
It’s slightly older than JSON, and it doesn’t support arrays as
elegantly as JSON. Otherwise, there are only minor differences
between the two formats. One thing people might miss in JSON is
the lack of the ability to add comments. On the other hand, JSON

40. Data files 379

is generally considered to be more easily human-readable. Other
than that, there are onlyminor differences, such as XML supporting
comments and namespaces.

Generally, I prefer JSON over XML. If I need to read an XML file, I
utilize tools that convert the data structure into a JSON object and
work with it in a familiar manner. I don’t have to learn something
new like this.

The following code converts an XML file into a JSON object:

1 import json

2 import xmltodict

3

4 with open("data.xml") as xml_file:

5 data_dict = xmltodict.parse(xml_file.read())

6 json_data = json.dumps(data_dict)

Writing XML files is rather tedious as well. Here I recommend
as well to work with json data and convert it to XML just before
writing.

1 import json

2 import xmltodict

3 json_string="""{"employee": {"name": "John Doe", "age": "\

4 35", "job": {"title": "Software Engineer"}}}"""

5

6 Python_dict=json.loads(json_string)

7 with open("person.xml", 'w') as file:

8 xmltodict.unparse(Python_dict, output=file)

Copilot

Copilot somehow struggles a lot when dealing with XML files. It
seems as if it didn’t know the xml libraries that would simplify it’s

40. Data files 380

life. Instead it assembles strings into an XML file by itself which
results in very brittle code that is very hard to read.

1 x = [1,2,3]

2 y = [4,5,6]

3 # write x and y to an xml file called 'data.xml'

The first version of Copilot I used wasn’t able to write proper XML
files. Instead of using a library it was creating the string from
scratch:

1 with open('data.xml', 'w') as f:

2 f.write('<data>\n')

3 for i in range(len(x)):

4 f.write(f'\t<x>{x[i]}</x>\n')

5 f.write(f'\t<y>{y[i]}</y>\n')

6 f.write('</data>')

Now this does the job, but this is certainly not how an XML file is
supposed to be created. Reading XML files is even worse.

1 x = []

2 y = []

3 # read the xml file into x and y

The code Copilot suggests is extremely brittle and doesn’t even
work in my case. Somehow Copilot doesn’t seem to know about
XML libraries that would simplify its life a lot.

40. Data files 381

1 with open('data.xml', 'r') as f:

2 for line in f:

3 if '<x>' in line:

4 x.append(int(line[3:-5]))

5 elif '<y>' in line:

6 y.append(int(line[3:-5]))

But during the last few months, Copilot improved and now writing
XML files is done with an ElementTree. This is certainly a much
better approach.

1 import xml.etree.ElementTree as ET

2 x = [1,2,3]

3 y = [4,5,6]

4

5 root = ET.Element("data")

6

7 x_elem = ET.SubElement(root, "x")

8 x_elem.text = ",".join(str(i) for i in x)

9

10 y_elem = ET.SubElement(root, "y")

11 y_elem.text = ",".join(str(i) for i in y)

12

13 tree = ET.ElementTree(root)

14 tree.write("data.xml")

HDF5

HDF5 is the most common binary file format. It is designed to
handle terabytes of data and optimized for high throughput. Most
research facilities and companies that handle large amounts of data
use this file format. It supports structured and auxiliary data.
To access the data, you can either utilize the HDF5 library in

40. Data files 382

your preferred programming language or download the free GUI
software. Use HDF5 if you need to store multiple gigabytes of
numerical data.

Working with HDF5 is, in my opinion, slightly less intuitive than
working with JSON files. This is because HDF5 uses datasets that
need to be created instead of simply accepting a dictionary.

The following code saves a list of values in an HDF5 file.

1 import h5py

2

3 with h5py.File("temp.hdf5", "w") as f:

4 dset = f.create_dataset("x", data=[1, 2, 3])

Reading a file returns an HDF5 file object. It may be a little
intimidating at first, but it is fairly easy to work with. With many
respects, it behaves similar to a dictionary.

1 import h5py

2

3 with h5py.File('temp.hdf5', 'r') as f:

4 print(list(f.keys()))

5 print(list(f['x']))

As HDF5 is a binary format you cannot look at the data using
a text editor. Instead you have to use the HDFview software,
https://www.hdfgroup.org/downloads/hdfview/

Copilot

Copilot seems to be getting along quite well with HDF5. On the
following code snippet:

40. Data files 383

1 x = [1,2,3,4]

2 # write x to an hdf5 file called 'data.hdf5'

Copilot correctly complements it to

1 with h5py.File('data.hdf5', 'w') as f:

2 f.create_dataset('x', data=x)

Also reading out data from an HDF5 file is no problem.

1 # read the hdf5 file into x

2 with h5py.File('data.hdf5', 'r') as f:

3 x = list(f['x'])

Databases

Databases (DB) are used for a large amount of data that youwant to
analyze but doesn’t fit into memory. Databases have a wide range
of functionalities that enhance searching and manipulating data
within the database. There are several vendors offering different
technologies.

I never really cared much about DBs and I’d like to teach you other
things instead. So, you better get your information elsewhere. I
only know that proprietary DBs can be extremely expensive, and
it’s important to write your code in a way that allows for easy
replacement of the database with another one. Otherwise, you may
find yourself locked into paying substantial annual fees.

Also, make sure that a database is not the core of your software.
It’s just a place to save and access data. It can be replaced with a
text file if necessary!

40. Data files 384

SQLite is probably the easiest database to use. That’s why I am
providing a brief example here. Compared to other databases,
creating or migrating an SQLite database is straightforward.

Here is the code to create a database and add some movie objects.

1 import sqlite3

2 con = sqlite3.connect("tutorial.db")

3 cur = con.cursor()

4 cur.execute("CREATE TABLE movie(title, year, score)")

5 cur.execute("""

6 INSERT INTO movie VALUES

7 ('Monty Python and the Holy Grail', 1975, 8.2)

8 """)

9 con.commit()

Copilot

The database can also be created by Copilot. Let’s define a movie
object.

1 import sqlite3

2

3 class Movie():

4 def __init__(self, title, year, score) -> None:

5 self.title = title

6 self.year = year

7 self.score = score

8

9 indiana_jones = Movie('Indy', 1981, 8.5)

Copilot

40. Data files 385

1 # create a SQLite database containing the indiana_jones m\

2 ovie

3 conn = sqlite3.connect('movies.db')

4 c = conn.cursor()

5

6 c.execute('''CREATE TABLE movies

7 (title text, year integer, score real)''')

8

9 c.execute("INSERT INTO movies VALUES (?, ?, ?)", (indiana\

10 _jones.title, indiana_jones.year, indiana_jones.score))

11

12 conn.commit()

13 conn.close()

Custom file format

Similar to the CSV file, you can also define your own file format
for things other than just numbers. You can define your own file
with structured data. You can even define your own programming
language, such as structured text, within your custom file format.
You can do pretty much anything you like. You are a free person.
Just don’t expect to be paid for such a waste of time. If you
aspire to become a successful software engineer, youmust prioritize
delivering value to the customer. You need to utilize JSON, HDF5
or a database. There is no need to define custom file formats.

41. Setting up a project
“If it’s your job to eat a frog, it’s best to do it in the morning. And
if it’s your job to eat two frogs, it’s best to eat the biggest one first.”
- Mark Twain

[https://youtu.be/LfIPVIsH4ZU]

Many software developers start by writing code immediately when
they have a task to complete. And they postpone all infrastructure
work for as long as possible. They continue to compile code using
the command line for as long as possible. They don’t use Git. And
they certainly don’t use a Continuous Integration (CI) tool. This is
dreadful. Set up these things at the beginning of the project.

Yes, it will take some time to get started. And yes, it’s a painful
process if you are not accustomed to it. But it is worth it. The
very first reason why it is worth it is DRY. If you find yourself
repeatedly typing the compilation command into the terminal, you
are essentially repeating the same action over and over again. This
is going to slow down the development process. This is muchworse
than spending the same amount of time at the beginning of the
process because it interrupts your thoughts.

For small projects, setting up Git and a proper build tool hardly
takes any time. After encountering a challenging bug for the first
time, you will appreciate having version control in place. This will
allow you to easily revert back to your previous changes. The same
holds true for the build process. Typing in many long commands
not only takes time but is also brittle. It is too easy to make a
typo and screw up the build process in some unforeseen way that
introduces hard-to-understand behavior. And especially when you
have to cooperate with other developers, there is no way around
using proper version control software and a build tool.

41. Setting up a project 387

Similarly, for Continuous Integration (CI). It will take some time to
set it up. But you will save a lot of time later on because you can
be sure that the tests you wrote (and I really hope you have tests;
otherwise, I recommend you read the chapter on testing [chapter
Testing]) always run. The code committed to the master branch
has been compiled, and the tests pass without any errors.

Yes, setting up the infrastructure of a project may take some time.
But it is certainly time well spent. There are so many advantages
to having a properly set up infrastructure.

• You have to learn how to use Git, CMake, and all the other
tools anyway. So, it’s good practice to get started with them
as soon as possible.

• You will save a lot of time in the future. This will outweigh
the time needed to set everything up now.

• Having properly set up tools makes it easier for new team
members to get started. Users only need to clone the reposi-
tory and run the build tool to get started.

////

Project Folder

// Add a plot with the folder structure

Code is mostly a collection of text files. One question is: how do
you deal with them?

The very first thing is the length of each file. Try to keep them
short. About 100 lines per file would be great, a few hundred are
kind of acceptable. Having many fairly small files improves the
overview. Generally, one file contains either a class or a bunch of
similar functions. Classes that have more than 1000 lines should
have been broken into pieces a long time ago. For this reason, files

41. Setting up a project 388

should never have more than 1000 lines. In fact, files should usually
be much smaller than this.

Theway to arrange the files in folders depends on the programming
language. The code is located inside the src folder, sorted by further
subfolders if necessary. Generally, each subfolder corresponds to
a library of the project. Make sure there is only your own code
and, depending on the programming language, your tests in there.
Nothing else. Do never ever allow any auto generated files inside
your src folder. Auto generated files should never make it into the
version control. They just polute it!

Generated files belong into the build folder. Like this cleaning up
the build is quite simple. Just delete the build folder and all build
files are gone. It also makes version control fairly simple. Add the
build folder to the .gitignore file to make sure that generated files
never make it into the version control.

Acceptance tests should also remain outside of the src folder as
these tests are quite independent of the code. They only use the
public API. I would keep them in a separate folder next to src,
usually within the same git project. You may also have them
outside of the repository or even hand over the responsibility to
the sales team if everyone agrees.

3rd party libraries belong into the lib folder. They are not part of the
git project, therefore the lib folder should be on the .gitignore file.
You need some other way to manage them. If you use few libraries
just manage them manually. In Python you can use the package
management software pip. Togheter with the requirements.txt file
this makes managing libraries quite simple. In other programming
languages like C++ this is a much harder task as you have to do
this by yourself somehow. Dealing with libraries is certainly one
of the drawbacks of older programming languages like C++, while
Python or Rust have a very good package management system.

There are some additional files in a project.

41. Setting up a project 389

1. Custom scripts for installation and build of the project. Get-
ting the project, downloading the 3rd party libraries, building
the project, running the tests and executing the project should
all require only one single command.

2. The readme.md file shown on the front page of the git
project. It usually contains installation instructions and a
short description of the project. In fact, this book was also
written as a readme.md file in a git project.

3. .gitignore is related with git. It lists all files and folders to be
ignored by git. For example, auto generated files or files that
are too big to be managed by git.

4. Some formatting, code quality checking or other miscela-
neous files.

There are a few pitfalls how to arrange the files and folder of
your project. But as long as you follow the general best advice
you should be fine. Consult the wisdom of the internet for your
programming language of choice.

42. Tools
“I’m an egotistical bastard, and I name all my projects after myself.
First ‘Linux’, now ‘git’.” - Linus Thorwalds

// I think this chapter needs some reworking. Or remove it
completely?

There is a fair amount of software that is supposed to help you
writing more or better software. Here is a list of the most important
classes of tools I worked with so far:

Version control software (VCS), Command line, Continuous In-
tegration (CI), Integrated Development Editor (IDE), debugger,
profiler, formatter, code quality checker, ticketing system, Wiki,
package manager, build tools, docstring, container applications,
container orchestration, databases and many more.

For all these classes of software, there are several different vendors
and open source solutions.

Version control software

Git is certainly the very first program to mention in this chapter.
Git is everywhere. It’s the Version Control Software (VCS) that
Linus Thorwalds programmed because all the alternatives were too
slow for managing the Linux kernel or had other drawbacks like
licencing issues [https://en.wikipedia.org/wiki/Git]. Git is clearly
superior to most other version control software and there is no
reason to learn anything else. Git is a de facto industry standard.
Only Mercurial is a viable alternative, but it is not as widely used
as git.

42. Tools 391

The original Git software is a console application but there are also
proprietary software products with a GUI.

I recommend learning the classic (command line) git. Start learning
it as soon as possible. Every programmer has to be able to work
with it. The only difference between companies is the way how
they use git exactly. For example there are different ways how to
deal with branches when merging them into master.

Git, everywhere git

Git should not only be used for bare code. Git can also be used
on any text file that you have. The build files should certainly
be version controlled. But also other pure text files are worth
controlling with git. For example if you do research and have
some files with measurement results. This could also be version
controlled. The price you pay is negligible compared to what you
gain by controlling all your files with git.

Or if you write a book like this one. It is written in Markdown and
version controlled with git. This makes it easy to cooperate with
reviewers and at the same time I always have a safety net when I
screwed up some of my text.

I won’t go further into details about git. There are plenty of tutorials
in the web that teach you how to use git. They will teach you how
to make commits, use branches and do merges. And remember as
I told you in the chapter on unit tests: unit test are great if you
have merge conflicts. The unit tests will tell you immediately if
you resolved them correctly.

Copilot

Copilot chat can convert human readable commands into git com-
mands. For example it converts git create a branch named "hello

42. Tools 392

branch" into git branch hello_branch. Just start the command
with git and you will get a git command.

Command line

The most common command line software is Bash (The Bourne-
again shell, a.k.a. shell) on Unix systems. However, the Windows
based PowerShell is a viable alternative. For many purposes Python
or other scripting languages can be used as well.

The command line is the Swiss military knife of software develop-
ment. It is the glue that connects all the different tools together. It
enables us to automate all the build processes. For this reason, the
command line tools are generally to be preferred over GUI based
tools. GUI based tools like the file browser are great for getting
started with some smaller projects, however you’ll quickly reach
some limits as they don’t scale up on bigger projects.

The shell is an extremely powerful and versatile tool for exe-
cuting other programs and running scripts for running all kind
of commands dealing with configuration settings, the filesystem,
networking, etc. It is certainly worth learning at least some of the
basic functionality once you have the opportunity of automating a
shell process.

Copilot

// figure out something else to ask Copilot. git questions have
already been answered before.

// Copilot for CLI might change how we use the command
line (and all its programs with it). Now you no longer
have to use google to find the syntax, but you can use
Copilot CLI instead. https://youtu.be/8_0DJ9FOlOM?t=787
https://youtu.be/pw0SH7AHIFI -> how does this work exactly?

42. Tools 393

1 git? how do I update the message of my last commit

This returns the command git commit --amend along with a
detailed explanation. The command can also be executed right
away. Furthermore the Revision prompt allows you to ask for
specific changes to the suggestion made.

IDE

The Integrated Development Environment (IDE) is a class of soft-
ware used for writing code. It’s like Microsoft Word adapted to
programmers. There are dozens of different IDEs available, both
proprietary and freely available. I never cared about the IDEs. I
just use what my work colleagues showed me: VS code. I don’t
think it’s worth spending too much time here by yourself figuring
out the details of one specific IDE. So I recommend you to do the
same as I did. Just ask your friends.

In all up to date IDEs, there are plug-ins for most of the tools
mentioned above. Ask your work colleague which ones you need.
Spend a few hours with watching your colleague working in his
IDE of choice to get an idea what the plug ins are used for. This is
not wasted time. You also learn something about the code he writes
during that time.

It is worthwhile learning some of the shortcuts in your IDE that
allow you to modify code in different files faster. This is useful as
it improves your work flow. But don’t overdo it at the beginning,
you may be wasting too much time here. You can still learn more
once you know how your personal work flow looks like. And if you
really like to push the shortcuts to the limit, you’ll have to learn the
VIM text editor which is operated by keyboard only.

42. Tools 394

Continuous Integration

“Continuous integration (CI) is the practice of merging all devel-
opers’ working copies to a shared mainline several times a day.”
[https://en.wikipedia.org/wiki/Continuous_integration]

This typically means checking in the latest changes of the code,
compiling it if required, running all the tests and building the final
artifact.

There are several different suppliers for Continuous Integration (CI)
software. I don’t know the precise differences and probably you
won’t have to neither. You don’t need this if you work alone and
in any serious software company this choice is made by others.

At the time of writing, Jenkins and Gitlab are the most commonly
used CI software.

Debugger

Probably everybody knows what debugging is. Because it is about
the first thing you learn at programming: The code doesn’t work
and I don’t understand what it does. Let’s walk through it and see
what my variables do. For example using print statements. But
there is a better way than using print statements. The Debugger.

Every programming language has its own debuggers and IDEs
usually support a debugger plugin for most major programming
languages. It is useful to know some of the basic functionality of a
debugger. Mostly setting break points, navigating through the code
and looking at the stack trace. But generally, it’s a sign of bad code
if you have to use a debugger too often. Write small classes and
functions where you can tell exactly what they should do. Along
with plenty of unit tests. Depending on the error you should be
able to pin point the source to a certain class or area of the code

42. Tools 395

without using a debugger. Anyway. Feel free to use a debugger,
for example if you work with legacy code. But always keep the
code quality high and make sure you need the debugger as little as
possible. It’s a useful tool, but it’s a bad sign if you need it.

Profiler

A profiler lets you check the time required for executing each part
of the code. Depending what kind of programming you do, chances
are high you will never need one. Only run the profiler if the
program is slower than it should be, which is probably not too often.
Thus, the profiler is not a software you have to get acquainted with
at the very beginning of your programming career.

Formatter

Pretty much all companies have a fixed ruleset how code should be
formatted. Some teams can debate for days about tiny details. If
you start at a company let someone set up the formatter for you.
In most cases this consists of copying some config file. And don’t
start endless discussions about the formatting details. Having the
formatter set up properly will save you some pain afterwards. If
the formatter follows the wrong rule set you will have formatting
changes in your merge requests. Which is absolutely terrible,
because it’s hiding the real changes. The formatter may change
thousands of lines in a single MR and you don’t care about
them. Real code changes are short but you have to check them
meticulously. Put both kind of changes into a single MR and you
are done for. Judging such an MR becomes impossible.

If you work with old code that was formatted with an out dated
ruleset, you have to run the formatter and create an MR before
you start writing code. Or at least the formatting needs to be

42. Tools 396

in a separate commit, though a separate, dedicated MR is to be
preferred. If you change the formatting rule set, run the formatter
on all code and create a dedicated MR.

There are also some companies where every employee can use any
formatting style he likes. Once an employee creates an MR, the
official formatter runs over the code as a first step of the merge
request. This offers the best of both worlds: the users are free
to use whatever formatter they like but there is still some default
formatting that won’t affect themerge requests. The only cost is the
work of the DevOps developer who has to implement this feature.

Personally, I don’t care too much about the formatting style. If I
have a choice, I use the default formatting with a tab width of 4
and a line length of 100. This is a reasonable compromise. Linus
Thorwalds (the guy fromGit) has a very strict opinion on that topic.
If you write code for the Linux kernel you have to use a tab width
of 8 and a line length of 80. Try writing code like that. You have
to write extremely well to make all the code fit reasonably into this
pattern. That’s exactly why he’s come upwith this rule. The google
style guide recommends also a line length of 80 characters, though
it is less strict.

Code quality checker

There are different programs available that check your code on the
most common quality issues. I don’t know too much about them
but it’s certainly worth a try. One example is the test coverage tool.
Tough this metric shouldn’t be abused as a business metric. Use it
to check that you have (almost) all code covered by your unit tests.

If you use C++ or any other compiled language, your most impor-
tant quality checker tool is the compiler. Enable the “treat warnings
as errors” setting for all warnings. You may find it annoying in the
beginning but you get used to it and it will make your code better

42. Tools 397

and prevent bugs. There is a reason why the compiler warns you
about something and he does a better job with finding unassigned
variables and other problems than you ever could. Why should
you search for potential bugs yourself if the compiler can do the
job automatically?

Pip, cmake

Some people may argue that pip and cmake don’t belong into this
list. Of course, they are right. But I’m still feeling like mentioning
a sentence or two about them.

Pip is the Python package management software
[https://pypi.org/project/pip/]. As a Python developer it’s
mandatory to know pip. It’s very easy to use. The command line
pip install numpy will install the numpy library. Done. A little
bit trickier is the handling of the virtual environment (venv) that
allows you to install all the packages in a separate environment
[https://docs.Python.org/3/library/venv.html]. This is useful if you
have different projects that require different versions of the same
library.

Cmake is the most commonly used build tool for C++. Meson is
a more modern alternative you can use for new projects. Make is
outdated. And don’t ever use the Visual Studio build.

Ticketing system

Jira [should I add links for every software or for none??] is the most
commonly used ticketing system and has little to do with code. It
is very easy to use and most of the work in Jira will be done by the
manager writing the tickets.

42. Tools 398

This ticketing software is also helpful when managing a one-man
project as it helps organizing the work. And it doesn’t even have
to be a software project. You can also use it for all other kind
of projects. If you don’t work for a company there are also free
alternatives. But I’ve never used any of them.

Wiki

Most companies use confluence as the knowledge base. Like Jira
this is an industry standard. Write general thoughts and high level
documentation here. However, things will go out of date quickly
so be careful.

You may also write some high-level documentation of your code.
But don’t go too much into details. Low level details change too
often and will get outdated and they should better be looked up in
the code.

Again, there are free alternatives around, though you are unlikely
to see any alternatives in professional environments.

Docstring

The docstring software auto creates a documentation depending
on the comments in the code. It sounds like a nice idea, though it
should be used scarcely. There is very little use of using docstrings
for internal documentation as you can also look at the code instead.
Instead docstrings should be used as a documentation for external
APIs used by your customers.

Every programming language has one docstring tool. For Python
it’s Sphynx, for C++ it’s doxygen.

Part 9 Collaborating

43. Working in teams
// https://github.com/97-things/97-things-every-programmer-
should-know/tree/master/en/thing_85 [Software Engineering at
Google, chapter 2]

“Humans are mostly a collection of intermittent bugs.” - Brian
Fitzpatrick

A good manager considers how things are done. A great manager
considers what is to be done and leaves the rest to his employees.
He has faith in them. This is much more motivating than someone
yelling around.

The times of the lone wolf programmers is over. Instead, you
will spend most of your career working in teams. The story of
the lone prodigy programmer in the basement is a myth. Modern
programming is done in teams. Not only do programmers work
with other programmers, but you’ll also have to work with people
from marketing and sales as well as customers.

Cooporating with other programmers has its advantages and draw-
backs at the same time. Comparing programming in teams with a
lone programmer is like comparing a parliament with a dictator. A
parliament requires more time to come to some conclusion, yet the
solution is generally better than the decision made by a dictator.

At the same time, scaling up software projects only works with
teams where all programmers are cooperating together. It is not
possible for a dictator to work on his own project. He has to adapt
and become part of the parliament.

43. Working in teams 400

Team structure

In most projects a team consists of roughly 4-12 software engineers,
one project owner and one project manager. The software engi-
neers are doing the real work. They work their ass off writing
awesome code while everyone else is just slacking off. Just kidding.
All other employees have work to do as well, it even if it might not
be that apparent to the developers.

The project owner (PO) takes care of the tickets. He is at the
interface between the project manager and the developers. The
project manager (PM) is … managing the whole project. He has to
talk to customers and get an idea what they want. Or rather, what
they need. These are not always the same thing. Nobody wanted
an iPhone before it was released, yet still everybody needed one.
And it’s the PM’s job to figure out such things.

It is important that everybody in the team talks to each other.
Software engineers talk a lot about their code. But quite frequently
they have questions about the ticket that the PM has to answer.
Vice versa the PM wants to know the state of each feature for
estimating the progress of the software.

The bus factor

The bus factor [https://en.wikipedia.org/wiki/Bus_factor] says how
many team members have to be at least hit by a bus before the
project is doomed. The definition of this expression may sound a
little absurd. And it is. But it has a point. Fortunately people don’t
get hit too often by a bus. But there are other risks. People can get
sick or they quit their job for whatever reason. And for a low bus
factor, this may put the whole project at risk.

Make sure the bus factor in your project is as high as possible.
Ensure that there is a good amount of knowledge exchange between

43. Working in teams 401

the team members. Such that everyone knows something about
everything. That the whole project does not stall only because a
single person is ill.

Developers work

The developers are the ones who do the real work. They are the
ones who write all the code. For such hard work it is important that
they stick together. Only a tight pack of hungry software engineers
can do the job. That’s at least their point of view. Now let’s get a
little bit more serious.

Software engineers have several tasks. The most obvious one is, of
course, talking to each other. This is why any modern software
company has a coffee machine with free coffee. You also have
to discuss the tickets, you have to discuss how the fundamental
structure of the code should look like and you have to talk during
pair programming or code review sessions. Though the talking
during code reviews is not absolutely necessary. Smaller MRs can
be done with written comments, but when in doubt, it’s always
better to talk to each other. Especially during times like Corona,
the human touch got lost and things sometimes got hairy.

You also have to talk during pair programming. Both participants
discuss together how the code should look like. This creates
important knowledge transfer, especially if both participants are
experts in different areas of the code. Both programmers learn
from each other and the code quality improves. Code review in
the MR is no longer required. All together pair programming takes
some more time than working alone but frequently this time is well
worth it. Because remember: the most important resource in your
company isn’t code, but knowledge. And knowledge is gained by
talking to each other.

Another fairly big job is going through Merge Requests (MRs), also

43. Working in teams 402

refered to as Pull Requests. Everyone has to do it, no one really
likes it. But it has to be. Nobody likes to wait a day until his code
is approved and merged. Therefore reviewing MRs has to be done
quickly. So get up, open the browser and select the first MR. And
now… doing code review is a tricky business. You can somehow tell
that the code is not good but it’s so… elusive. It’s your job to bring
it to the point without being too picky. Furthermore, you see some
code that had been there before and now it’s duplicated. It should
be refactored. And a dozen of other things. Time to give the author
of this MR a call. This can’t be resolved by writing comments.

Communication

As mentioned above, teamwork is a key element in modern soft-
ware engineering. Without good communication skills, team work
is not possible. So it is important to learn how to talk to other
people. To learn about the flaws of humans and how to deal with
them.

In a team, the most important language is not Java but English (or
German in some of the projects I worked on). Use this language
to communicate with other team members. And if you think
communicating with a computer is hard, think twice. For a
computer you can just google what to do and most of the time
it works. But with other humans it may take significantly more
efforts for a good communication.

• Make sure you know what you are talking about and know
how to talk to the specific audience.

• Keep communicating. Ask questions. Let the other person
talk. Once you don’t get replies anymore you have an issue.

• Make sure the other person really understood what you were
talking about.

43. Working in teams 403

There are probably hundreds of other rules, but these few here are
the ones I know. Even though I’m not that good at applying them.
As a developer you don’t have to know all these things. But if you
want to manage people you have to get a feel for how to talk to
others. Get some books or seminars about it, this is not the place
to go into details.

Humans are all inherently flawed. They are insecure and try
to hide themselves. They don’t like to be criticized. They are
scared because they are not a genius. But they don’t have to be.
Hardly anyone is a genius and most work is done by good, but
not outstanding programmers. This fear, however, makes things
worse. Because it is important to talk to other developers. Your
team is much more productive if the team members talk to each
other. If they are able to criticize each other in a constructive way.

It is ok to fail. Fail early, fail fast, fail often. Get feedback as early
as possible and improve. This is the only way to make progress.
Vice versa, you always have something to teach. Discuss with your
colleagues and you can learn from each other. Don’t be afraid, no
body is perfect.

Don’t come up with claims like “this is bad”. Critisism is has to be
constructive or else it is useless. Even worse, it can be regarded as
a flat out assault. You have to be able to explain why something is
bad such that the original author has a chance to improve.

In order to excel, humans need psychological safety. This requires
3 things: humility, respect and trust. Effective team work is not
possible without these things. Discussions only work if all parties
involved are treated equally.

Working with customers

// https://github.com/97-things/97-things-every-programmer-
should-know/tree/master/en/thing_97

43. Working in teams 404

Customers are only humans. Quite frequently they don’t say what
they mean because they don’t know it any better. Keep your
vocabulary changing to figure out what certain words actually
mean in the view of the customer. At times this reveals some
misguided view. For instance if customer and client have some
completely different meaning. Do not expect the discussion on
requirements to be over after one meeting with the customer. You
have to stay in touch in order to get constant feedback to make sure
you implement what the customer wants and not what he says.

Frequently customers don’t know what is important. Or at least
things are important to customers that are not important to the
programmer. For instance a software is only used if the GUI looks
exactly the same as in the previous software. As long as the user
does not have to learn anything new. Even if the old GUI was really
badly designed, the customer refuses to adapt. You really have to
come up with some significant improvement that your version will
be accepted.

44. Code review
“The computer was born to solve problems that did not exist
before.” — Bill Gates

[software engineering at google]

Code reviews are important for spreading knowledge and to im-
prove the quality of the code. This does not work without some
criticism, so it needs a little bit of intuition to know how to criticize
the code without insulting the author. Most important of all, you
have to critisize the code, rather than the author of it. But let’s first
have a look at how the whole code review process got started.

A long time ago, in a kingdom far away, software developers started
cooperating. They shared their code. They started working on the
same code. At the same time. And problems started creeping up.
They needed some software to control the different versions of the
code.

After some mediocre attempts to fix this issue there was our savior.
Linus Thorwalds, the hero of every fanatic Linux developer, saved
us by developing git. This solved the problem of version control
software once and for all.

Unfortunately, git was not yet the final solution. It was still possible
to write crappy code and merge it into the master. There was no
other solution than firing this malicious developer.

But now comes the real solution: Merge Requests (MR) and code
reviews. No user is able anymore to make changes on master all
by himself. Before he can merge his changes into master, he needs
to create a public request and wait for someone else to accept it.
And thus the other developer allows the changes to be merged into
master.

44. Code review 406

Now there are a few things to consider regarding code reviews.
First of all, code reviews are great not only to keep the code quality
up to date, but it also helps improving the programming skills of all
developers. They are a great opportunity for knowledge exchange.
Developers are obliged to look at each-others code and thereby
learn a lot.

Drawbacks

However, there are some downsides as well. They can be severe
enough that teams even stopped using MRs altogether. Most
importantly, everyone has to stick to the rules. There is no way
to prevent foul play by the developers sabotaging the system in a
way that will render the MRs useless or even counterproductive.

The first problem is people just accepting merge requests without
commenting anything, maybe even without looking at the MR.
Either because they don’t understand it, because they are lazy, they
don’t have time, or to make the author of the MR a favor. One
would be better off not using MRs at all.

The second problem is speed. Speed is crucial. It is of utmost
importance to check MRs as quickly as possible. Too long idle
times for MRs lead to a very significant drop in the developers’
productivity. Additionally, it is highly frustrating waiting for an
MR to be looked at and not being able to continue working.

Another very serious problem are too long MRs. It is impossible to
judge the quality of a change of a thousand, even a hundred lines
of code. You should keep the tickets small. You should keep the
commits small. And you should keep the MRs small. Huge MRs
are a waste of time as no one understands what’s going on. If a
ticket turns out to be too long, split up the code in several MRs and
make sure the tickets become smaller in the future.

There is a wide spread and very fundamental misunderstanding

44. Code review 407

regarding MRs. Don’t expect the referee to find bugs. This is
in absolutely impossible. The referee doesn’t have time to think
through all these details. The author is responsible for writing
error free code along with good test coverage to prove that it most
certainly free of bugs. MRs are more about the general structure
of the code. And they are about knowledge exchange. The referee
can only check that there is a reasonable amount of test coverage.

Always be polite. AnMR is like criticizing someones code by email.
This is a highly delicate thing to do. Stay professional and make
sure you only comment the code and not its author. Once people
start YELLING at each other in MRs it is high time to quit the
job. Now things certainly deteriorated during the Corona virus
pandemic when most developers had to work in home office. It
takes some good team spirit in order to deal with written comments
on MRs.

One thing I can highly recommend is looking at the code together,
kind of a pair reviewing. In theory, the referee is supposed to un-
derstand the code all by himself, or at least that’s my understanding
of an MR. However, discussing the code with the author turns out
to be a really good alternative. Especially for long or important
MRs. Additionally, it keeps up the human touch. It is much harder
to insult someone orally than written. This is a highly important
feat.

Conclusions

In case you do pair programming, you may skip the code review
phase all together as there were already two developers in agree-
ment that the code is fine. Pair programming also allows your
team to exchange knowlegde that would have to be done in the
code review. This is one of the reasons why pair programming
does not require twice the amount of time. The code review would

44. Code review 408

take a considerable amount of time that will be saved with pair
programming.

For teams with little experience, I think it’s still important to make
merge requests. The advantages outweigh the drawbacks in my
opinion. However, only if everyone plays by the rules and gives
fast feedback.

With very experienced programmers, on the other hand, one can
skip the code reviews and just do some high-level discussion of the
code instead. This is faster and usually does the job as well. Very
experienced programmers only have to coordinate the high-level
abstractions and don’t have to review the low-level details. I hope
your team gets to this state quickly as you can be so much more
productive.

I generally recommend doing code reviews. But if code reviews
become a nuisance, which they easily can you have to rethink the
way you work and possibly find alternative ways to share knowl-
edge about your code. Just don’t forget that sharing knowledge is
very important, but unfortunately also very expensive.

45. Agile
“All architectures become iterative because of unknown unknowns.
Agile just recognizes this and does it sooner.” - Mark Richards

Agile is the de facto industry standard when it comes to planning
of software projects. But it has not always been this way. So how
did we get there and what does Agile actually mean?

// Volker: kanban worked much better with real paper. Software
has all kind of drawbacks.

// add the INVENT points from clean agile

Problems of Waterfall

Until the the early 2000s, most software development teams were
working according to the so-called waterfall scheme. For every
project, there was an analysis, a design and an implementation
phase. This sounds like a good thing to do, as other engineers work
the same way. However, planning software top-down never really
worked out as it was not possible to plan all the complexity top
down and changing requirements made things even worse. Brief,
in many cases waterfall projects turned out to be a disaster.

The first problem of waterfall was missing feedback. The whole
project was just one big pile of work and it was impossible to get
a reasonable estimate on the time it takes to get all the work is
done. Many projects failed spectacularly as at the deadline there
was still a significant fraction of this pile left but no one informed
the management beforehand.

The main issue however was, that people had the wrong mindset.
They assumed one can plan software like building a house. One

45. Agile 410

makes a plan in the beginning and gets a team of developers to
execute it. This does not work out. It is simply not possible to plan
a house down to the very last detail. The architect has to visit the
construction site weekly, if not daily to fix problems that will show
up. But that’s not the only issue. Maybe even worse, since the team
was working in waterfall mode, they were not in the right mind set
to adapt to changing requirements or problems encountered during
the implementation.

Agile was born

When planning a project, there are three simple truths [Zühlke,
www.zuehlke.com]:

1. It is rarely possible to gather all the requirements at the
beginning of a project

2. Users will change their minds
3. There will always be more to do than time and money will

allow

These three truths are the reason why waterfall was never going to
work. Instead a somewhat more adaptive approach was needed. A
more … agile one.

In 2001, a group of software engineers met for two days in the
Rocky Mountains in order to improve the planning of software
projects. The result was the Agile Manifesto [Agile manifesto],
[Clean Agile], a brief guide line how software development should
be done. Some of the points were:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.

45. Agile 411

• Responding to change over following a plan.

// write something about these values?

While the Agile Manifesto was about how a project should be run,
there is also a Bill of Rights for the developers. The Bill of Rights
states what kind of rights each individual in an agile process has.
// add the bill of rights for the customers??

• You have the right to know what is needed with clear decla-
rations of priority.

• You have the right to produce high-quality work at all times.
• You have the right to ask for and receive help from peers,
managers, and customers.

• You have the right to make and update your own estimates.
• You have the right to accept your responsibilities instead of
having them assigned to you.

Write something about the bill of rights?

Work planning

// explain story based velocity rather than story point based plan-
ning? [https://youtu.be/go_pLBt8PP8]

The product owner has a set of requirements that the code should
fulfill. This pile of work is broken down into small tickets. Where
I’d like to emphasize the word small. Each ticket should be doable
by one person during one sprint. Preferably it’s smaller than that.

Every ticket is estimated for howmuch work it will take. The ticket
size is quantified by the number of story points it gets. This is an
artificial number to give the tickets a measurable size. Yet at the
same time, the story points are vague enough to indicate that this

45. Agile 412

value is only a vague estimation. In most projects, a story point is
between one half and one day of work.

The ticket size is estimated at the so called sprint planning, a
meeting where the next sprint is planned. For each ticket, the
number of story points is estimated by the team. Usually every
developer makes a hidden estimation and the average is the number
of story points being assigned to the ticket. If there is a large
discrepancy in the estimations, the team needs to discuss why this
is the case. Probably some difficulty was missed, but it could also
be that most developers underestimated the task. Unfortunately
this estimation of tickets does not always work too well. It takes
really good planning such that all developers know what has to be
done in the ticket. Otherwise the estimations are way off. This is
especially the case when the ticket is not well defined. In this case,
the ticket probably has to be split up into smaller tickets.

Tickets all have some business value. They have a direct effect on
the user. This means, that every ticket is a vertical slice through the
software stack. From the database through the back end code and
to the GUI. Everything has to be worked on in a single ticket. So,
either you know already how to work on each layer of the software
stack, or you team up with someone else and do pair programming
in order to fill the knowledge gap.

At the same time, one can write acceptance tests for every ticket.
“… if the user clicks x, then the window closes.” This test is also
the acceptance criterion of the ticket. The ticket is accepted if the
acceptance test passes.

// Write SMART Acceptance ciriteria [Zühlke, www.zuehlke.com]
// move this to Requirements Engineering??

Specific: Use examples with values. Measurable: You have to be
able to test it. Achievable: It should not depend on 3rd parties.
Relevant: It should be important to the user. Time-bound: It should
be done in a reasonable time frame.

45. Agile 413

Quality Assurance

In waterfall projects, the Quality Assurance (QA) was manually
trying to find bugs in the existing software. This certainly does not
fit anymore with agile. Instead, the QA should write the acceptance
tests of every ticket. These tests should preferably be written before
the developers finished working on the same ticket. This is quite
similar to TDD and is called Behavior Driven Development (BDD)
or at times Acceptance Test Driven Development (ATDD).

Finishing the acceptance tests before the developers finish the
actual ticket is a hard task. One way to mitigate this issue is
working ahead. The QA team can always try to be half a sprint
ahead. This is not so easy as the sprint planning was not yet done.
On the other hand, the PM should know quite well one sprint ahead
what is going to follow next.

The Iron Cross

// make a graph of the iron cross // or remove this alltogether?

As in most other domains, there is frequent problem of projects
not being done in time. There is of course always the solution of
reducing quality far enough to make it in time.

In Software engineering, we have the rule of the Iron Cross: Good,
fast, cheap, done. Choose three. Here are some options how the
management can deal with these issues.

Good

Reducing the quality of the code is the first option. Albeit, it is
probably the worst one. This will lead to bugs and the overall

45. Agile 414

productivity of the team will plummet quite quickly. Quick and
Dirty just doesn’t work. Especially not on the long term.

Fast

Reducing scope of a project is usually the best option. In Agile,
the important tickets were done at the beginning of the project.
Furthermore, the work was cut vertically. Meaning that all the
important stuff is already working. This allows the management
to remove some of the less important tickets from the scope of the
project.

Cheap

If a software project goes wrong it’s usually not that cheap any-
more, no matter what’s being done.

One thing themanagement tends to do is throwingmore developers
at the problem. This, however, is not working out as planned.
It takes time and effort to introduce the new developers into the
project, leading to a short-term dip in the overall productivity,
before ramping up.

Done

Changing the schedule helps a lot and is frequently the only option.
As it was already the case in waterfall times. On the other hand,
there are also plenty of projects where the scope of work is tuned
in order to get the work done. It is quite amazing how often
the core requirements of a project were overestimated. There are
projects where some of the first requirements were in the end not
implemented because it turned out that these requirements were
not really needed.

45. Agile 415

Sprints

In Agile, the whole project is split up into pieces of one to four
weeks, called sprints. During each sprint, there is a sprint planning,
some time for implementing the features and a sprint presentation
meeting in the end where the outcome of the sprint is being
discussed. This structure results in regular feedback how the
project is progressing. It allows the project manager to extrapolate
the current progress and make rough a estimate on how long it will
take until the next mile stone. This progress can also be used as a
monitoring tool how well the development team is doing.

The first meeting of a spring is the sprint planning. It takes the
whole team to discuss the tickets and which ones to scope into the
sprint. The sprint planning for a two-week sprint may take a half
a day.

Part of the meeting is the planning game (see Work Planning),
where the story points for each ticket are estimated. This is required
to plan the scope of the next sprint.

Next is the daily meeting. This meeting is not mandatory and
it’s very short. It is kind of replacing the coffee machine gossip.
Everyone very briefly says what he’s doing at the moment and if
there are any blockers. There are no discussions in this meeting.
Discussions are held afterwards.

Toward the end of the sprint, the software developers present their
work done in the sprint presentation meeting. The idea of this
meeting is for all the stake holders to get an idea what the status of
the software is. And hopefully, the developers are proud to present
their work done.

The last meeting is the retro perspective. Here the team meets
to discuss anything that could improve the productivity of the
development. Issues why the ticket size was estimated wrongly,
blockers that were not resolved for too long, unresolved MRs, etc.

45. Agile 416

Becoming agile

What I tried to explain in this chapter so far was supposed to be
something like a manual how to become Agile. The real effort,
however, lies before you. There is no Agile a manual. It is more
like a schema. And you can stretch this schema in many possible
directions, whether it makes sense or not.

The most important point from Agile is that you should figure
out by yourself what works best. And be honest with yourself.
It may be more convenient to work alone for several weeks and
hand in a pile of work in the end, than spending some time in
meetings every two weeks. You don’t know how your colleagues
are doing. You lack knowledge how you are progressing. And not
only you, also your project manager would like to know how things
are going. This is a pretty important aspect of Agile: you gain a lot
of information about the progress of the project that will help you
to further plan the rest of the work.

Furthermore, there are some things that are absolutely mandatory,
when working agile. You are not planning the whole software
anymore at once in the beginning. Instead, you have to be able
to adapt. Your code has to be flexible. What most people don’t
understand is that they would have to remain flexible also in
waterfall mode as plaining everything from scratch isn’t working
out.

In order to be flexible, you have to be able to adapt your code. You
have to change its structure. You have to refactor. This is a hard
task and you’re probably afraid that youmay break something. But
it’s inevitable. You have to be able to change your code. That’s your
job. Instead, you have to mitigate your fear of breaking the code.
And the only way to do so are automated tests. Loads of it. Pretty
much every single line of your code should be covered by a test.
This is the only way how Agile can ever work out.

46. Requirements
Engineering

“Do the Right Thing and Do Things Right the First Time” - Marcia
(Marci) Malzahn

Written by Felix Gähler

Requirements Engineering (RE) is the process of determining what
you should implement. Because as we have learned, we may only
implement code if it’s really useful for our customers [chapter
Software Engineering].

It may be surprising, why this chapter is even needed. Isn’t it
obvious what you have to implement? Unfortunately no. Many
times it is even highly unclear what you have to implement.
And you quickly wasted a few hundred thousand euros if the
development teamwastes a fewmonths developing a feature which
in the end isn’t used. It is therefore very important to always be
aware of what and why you are developing.

Stakeholders

As so often, you spend a large part of your work talking to other
people. You have to find out who is important and who just feels
important. You also have to consider the different characters in
the team and act accordingly. Company politics. If you don’t feel
comfortable with this, you better stay in software development and
don’t switch to Requirements Engineering.

Stakeholders are all persons with an interest in the system. If I
forget to ask a stakeholder, he will not be satisfied at the end.

46. Requirements Engineering 418

Therefore, I create a stakeholder list, in which I estimate how big
the interest is, and how big the power. A stakeholder with great
power must of course be kept happy, even if his interest is rather
small. Stakeholders with great interest but little power I actively
involve, because they are often the daily users. Stakeholders with
great interest and great power I prioritize. And those with little
interest and little power I can safely ignore, even if they may make
the most noise. [Create graphic]

Goals, Context and Scope

First, you have to ask yourself what goals you want to achieve with
the new system. It is important to define the goals as completely
and consistently as possible. They should also be weighted accord-
ing to their importance. It is worth investing some time in a precise
goal description, which is coordinated with the stakeholders.

You always have to be aware of what exactly belongs to the new
system and what does not (system boundary or scope). This also
includes the question of what actually belongs to the system and
what is predetermined from the outside. What is in the scope can
also be changed in the project.

The scope and context can be represented in a use case diagram.
This diagram shows which actors influence components of the
system. // Insert example

In the scope and context there is initially a gray area. The smaller
this area is, the smaller the risk of the project. It is therefore
worthwhile to determine the context and especially the scope as
precisely as possible and to update it regularly in the case of
iterative approaches.

Goals, context and scope form the framework in which the require-
ments can now be determined.

46. Requirements Engineering 419

Requirements Elicitation

Just as it is difficult to write good code, it is also difficult to describe
a requirement in a ticket. It should not be too long, but still as clear
as possible. It should also be well received by the developers. Not
everything that seems logical to the author of a ticket is logical for
the developer who will implement the ticket.

It’s best to write a few examples in the ticket, which can also serve
as a test case. These should include both the “happy case” and
boundary conditions and special cases. The latter is often forgotten.
For example, in a bank transfer it must be prevented that a negative
amount is transferred.

The requirements should be formulated as neutrally as possible.
They should describe the WHAT and not the HOW. The author
of the feature should actually know nothing about the technical
details of the code. In addition, developers often have better ideas
on how to implement something than external persons.

It is crucial to involve the stakeholders in the requirements elicita-
tion. This is hard work. It is time-consuming and labor-intensive.
I try to find as much as possible and to “tease out” the stakeholders.

If you think it would be easy to find the requirements for a new
system, you are wrong. The users, both outside and inside the com-
pany, are not waiting to discuss the advantages and disadvantages
of the software with you for hours. They have work to do. Events
such as company outings and aperitifs can help. Sometimes surveys
and interviews are more helpful. The most important thing is that
you are a good listener, so that people like to talk to you about their
concerns and trust you.

Furthermore, you must also inform yourself independently of the
users about the topic. It is not only important what the software
can already do, but much more what the customers want. Often
one thinks too narrowly. Just as Nokia did not want to develop a
smartphone at the beginning of the 00s, although it was suggested

46. Requirements Engineering 420

by an engineer. Nokia simply saw no market for a phone without
a keyboard.

The most important sources are:

• the stakeholders: clients, customers, users, managers, opera-
tors, developers, architects, testers

• documents: laws, norms, standards, concepts, specialist arti-
cles, error reports

• existing systems: old systems, predecessor systems, sur-
rounding systems, competitor systems

When determining the requirements, there are 3 different factors:

• The basic factors are those that are often not even mentioned,
as they are considered so self-evident. But they must not be
forgotten.

• The performance factors are the focus of the users and are
usually discussed.

• The enthusiasm factors are those that a user wishes for,
although he does not know it. If you find these features, you
have done a really good job.

The best way to find all the basic factors, performance factors
and enthusiasm factors is to combine several survey techniques.
Interviews for the performance factors and additional creativity
techniques such as workshops or brainstorming for the enthusiasm
factors. Field observation is well suited for the basic factors, which
are considered self-evident by the interviewees and are therefore
not mentioned at all.

Example hotel: That toilet paper must be available is not men-
tioned, as it is considered self-evident. But woe if it is missing when
you are sitting on the toilet!

46. Requirements Engineering 421

Documentation of the requirements

It is best to document the requirements continuously during the
interviews, workshops, etc. The same or very similar requirements
are of course mentioned again and again. It therefore makes sense
to record the requirements in a uniform pattern so that duplicates
can be easily recognized.

I document the requirements in natural language. This way,
non-technical readers, suppliers, customers, managers can also be
addressed. The stakeholders do not have to learn a tool first, but
can work without training.

With the help of a glossary, I can define terms that are used in
the requirements. This way, misunderstandings can be avoided. //
example

I also document the requirements using formal models. These help
to find gaps and contradictions and facilitate the later development
of solution models. A model is like a map. A simplified image of
reality that only shows the relevant things. The model shows this
image from a certain perspective. It therefore makes sense to create
several models that show reality from different perspectives.

Use-Case Model

With use case models, the business cases and their interactions can
bemodeledwell. I therefore create a diagram that shows the system
boundary and the actors that interact with the system.

In order to identify the use cases, I start with the actors. I think
about what the system should do for the actor. Does it store data?
Who triggers the action in the system?

Small systems typically have about 10 use cases, while large sys-
tems can have 50 or more. // Example

46. Requirements Engineering 422

Class Diagrams

The business objects and required data can be well represented in
class diagrams. //example

Prioritization of Requirements

You start with the most important tickets as you will never imple-
ment all of them. The requirements are therefore prioritized (in
consultation with the stakeholders). It is not surprising that every
stakeholder wants to see “his” requirement at the top! In order to
objectify this conflict, there are prioritization models such as WSJF
(Weighted Shortest Job First). This optimizes the economic benefit
by comparing the costs of delay and implementation effort. The
difficulty, of course, is to estimate these costs.

Review of Requirements

It is much easier and cheaper to fix a bug in the requirements phase
than later in the testing phase or even in production. Therefore,
it makes sense to review the requirements before they are imple-
mented. Typical errors are incorrect, incomplete, contradictory, or
unrealistic requirements.

It is very important to involve the right stakeholders in the review.
Error search and error correction should be separated, the yield is
then higher. In a rapidly changing environment, it makes sense to
repeat the review periodically. Are we still up to date?

A simple and effectife review method is the review. A moderator
invites stakeholders as reviewers, goes through the requirements
with them and creates a list of findings with weighting. Based on
the findings, the requirements are then to be corrected accordingly.

The reviewed and accepted requirements form the so-called base-
line for development.

46. Requirements Engineering 423

Administration of Requirements

In a small project, the requirements can easily be managed in a text
document. Nevertheless, it is worthwhile to give each requirement
a unique ID as a reference. The ID can also be used to document
the code.

Requirements have other attributes in addition to ID and descrip-
tion. The most important are:

• Source of the requirement. This is important for queries.
• Priority of the requirements
• Status of the requirement. Is it implemented, tested, ac-
cepted?

• Verification tests. These are used to check whether the
requirement is implemented correctly.

It is also important to manage changes systematically. If a require-
ment is changed during the project, I document exactly what was
changed when. The changed requirement must again go through
the review and be accepted. Then the question arises, where in the
already implemented software the change has an impact.

In security relevant systems, traceability is a must. So the traceabil-
ity from the acceptance test back to the source of the requirement.

Tools for Requirements Management

A common tool is Atlassian Jira. With this tool, requirements and
test cases can be managed and assigned to developers for imple-
mentation. Also, detected errors (bugs, defects) can be recorded
and prioritized in Jira.

47. Planning
// TODO: read through again. Is there duplication with the agile
section?

“We take the most experienced engineer. He spends 2 days making
various attempts to estimate the amount of work required. In
the end we take the highest estimate and multiply it by two.” –
unknown

Planning major projects is extremely hard, not only in software
engineering. Architects and civil engineers plan houses and streets
all the time so they’ve become fairly good at it. But as soon as
there is something much bigger they never did before, they start
struggling. Frequently they are quite good but there are always
cases where things go haywire. Not only at the Berlin airport.

With software development it is even worse. There are no small
houses and streets that we can get some practice with. Unless you
do very basic web or app development. Most software is simply
way too complex and fairly unique. It’s impossible to understand
all the details. Even the fundamental logic of the problem is not
always apparent. Somehow plans on writing software are always
too optimistic and failed deadlines are standard.

This sounds very logical. We are all motivated and want to get
things done. But our working speed is limited. It’s slower than we
want it to be. We needmore time to understand problems and code,
we have to change more code than intended and we also spend a
lot of time with MRs and meetings. If your boss asks you when the
software is going to be ready, try hard not to be too optimistic. It
is very hard but making too optimistic guesses won’t help anyone.
You put yourself under pressure and ultimately you still miss the
deadline.

47. Planning 425

Planning code in detail is a similar topic. But at least there is now
a solution that seems to work in most cases.

For a very long time, software projects were developed using the
waterfall approach. There is a team of developers who try to
understand the topic and develop a model on the white board how
the structure of the code should look like. Another team, or maybe
even the same one, takes these ideas and implements them. Do
I have to tell you how this ended? Let me give you some hints.
People tend to underestimate complexity; people miss features and
furthermore there are changing requirements. The result is a team
of software engineers trying hard to implement what they were
supposed to. At the same time, it doesn’t work as the planning
team missed important details and over the time new requirements
showed up. I heard of cases where this approachworked. A few. As
well as a lot of disaster. Software projects are simply too complex
as if the waterfall approach would work.

Now let’s go back to the civil engineer and his houses. It makes
sense that the civil engineer plans and the construction workers
build the house. That’s what they do. That’s their job. Over
the time a construction worker gets an idea how the structure of
a house has to look like. But still, he is never going to plan one. He
wouldn’t know how. Vice versa, the civil engineer could maybe
build a house, but it’s financially not interesting. It makes sense
to have two different groups of workers taking care of planning
and construction. And even here the civil engineer has to check
the progress of the construction frequently and improvise in case
of unexpected events.

In software engineering the planning and the development team
both have the same education. The planning team might have
a little more experience than the development team, but that’s
negligible. Then why do you separate the two tasks? This creates
only overhead and frustration. If the planning team is smart
enough to plan the whole software on their head, they should also
have enough experience to write the whole thing down in code.

47. Planning 426

There’s barely and overhead between planning the software and
writing it down. When writing the code down, they will be able
to see if everything really works out as plannned. Ultimately the
planning team can make the whole job on their own.

Planning code

// move elsewhere? Rename section? Most of it is about UML
diagramms.

A widely used tool to display interactions between classes are UML
diagrams. To put it up front, I don’t like UML. It’s generally a
waste of time. You can also just briefly write the empty classes
and connect them in code. It’s the same, just in a different
representation. UML is the worse one. It would be easy to create
the UML programming language. But no one has done it. Because
graphical programming is terrible. It is harder to understand than
code. Small UML diagrams are OK, but one can quickly get lost
if they get bigger. Ask scientists about their experience with
Labview. I prefer writing the code framework right away and save
the effort for creating UML diagrams. However, feel free to try
UML diagrams. If they are a great help for you or your team it
doesn’t matter what I think.

One also has to consider the limitations of UML diagrams. The only
represent classes and their relationships. This covers only a tiny
fraction of a program. Quite frequently you have to understand
the logic behind a problem where UMLs won’t help you. You need
something different. Try out whatever you feel like. Some different
sketch, a plot, a coffee break, a walk in the forest, … As long as it
helps you understanding the problem it does the job.

I also had such a moment during my master thesis when I was
calculating the expected value of the experiment but I was stuck for
a long time. One late afternoon a PhD student came by and talked

47. Planning 427

for a little. He just casually mentioned every step of my calculation
and within a minute I found my mistake. Talking to other people
is usually the best way to solve a problem.

48. DevOps
// move this chapter further to the back? It contains some testing,
but it’s more a high level overview of the software development
process.

Development and Operations, short DevOps, is the combination
of Continuous Integration (CI) and Continuous Delivery (CD).
In short, it is automating everything from the build, tests to the
release. But in order to understand more precisely behind DevOps,
we have to take a look at how software development teams used
to work in the early 2000s. What kind of problems they had that
DevOps promisses to solve.

The early 2000s

Working with code in the early 2000s was tedious. Not only
were Integrated Development Environments (IDEs) lacking a lot
of functionality that we take for gruanted nowadays, also building
a project was usually a tedious task. Many projects were lacking
a one-click-build and instead the developers had to go through a
series of steps in order to build the executable. Then they used SVN
as a version control tool because git didn’t exist back then. They
could just merge their code on to trunk (something similar to the
main branch in git), possibly even without a merge request. And
no one knew whether the code was really working. Code could go
into production without anyone ever checking that it was working
out! You could have even merged a commit that broke the build!

Most teams were not writing tests for their code. It just
wasn’t fashion back then. Only with the advent of Extreme
Programming (XP), [Extreme Programming Explained: Embrace

48. DevOps 429

Change, K. Beck, 1999] and with the Agile Manifesto in 2001
[http://agilemanifesto.org/], testing started taking up. This was
certainly a mile stone for the software development, but it added
another problem to it. So far you had to do a build, which was
already quite tedious. Now you also had to build and run the tests.
It sounds easy, but once you consider that you don’t just have one
kind of test, but several different ones, it becomes apparent that
doing all the builds by hand wouldn’t scale anymore. You have
unit tests, integration tests, functional tests, performance tests, etc.
The only way to keep up with all this new work is automating
it. Continuous Integration was born. Not only the build and the
formatting of the code was automated. Everything was automated.
Code could only be merged if all the invariants were met:

• The code is formated according to specification
• The static code analysis passes
• The build passes
• Building all the tests works
• All the tests pass

Even though there are companies that don’t care about the for-
matting anymore. They just let the formatter run for every merge
request on the server. Locally the developers can use whatever
format they like. This takes some effort to set up the CI/CD pipeline
but it saves work for the developers.

Then there is also the task of creating an executable. It used to take
manymanual steps as well. Which was again slow and error prone.
Now this part of the Continuous Delivery.

We have the development (Dev) and the IT operations (Ops) bun-
dled all together, these steps form DevOps. DevOps is automating
everything that has to do with building, testing and releasing of the
new software.

48. DevOps 430

Getting a project

Furthermore getting started to work with an existing project was
frequently a pain. There were so many things that could have gone
wrong. “Where do I get the source code from?”, “What libraries do
I have to install?”, “Why does the build not work?”, “Ah, I have to
use that specific version of this library?”

It was a pain. And in many companies it still is. There is a simple
rule about getting started: It has to work with one command.
Getting the repository has to be one command, setting up all the
libraries has to be one command, building it has to be one command
and running the executable has to be one command as well. If it’s
any more than one command per step, you have to write a script
that does the work for you.

Benefits of DevOps

[https://www.atlassian.com/devops]

• Speed: Teams that use DevOps have a significantly faster
development cycle. Building, testing and realeasing software
becomes much faster.

• Collaboration: DevOps improves collaboration between team
members. For example due to merge requests. This makes
teams more efficient.

• Rapid deployment: DevOps allows for rapid deployment.
This has become more and more important in the last years.

• Reliability: DevOps improves the reliability of the software.
It is easier to find bugs and fix them. Also the software is
more stable as it is tested more thoroughly.

49. Mental health
I didn’t really think about this topic until I watched just an-
other random youtube video about this topic[https://youtu.be/aK_-
Jq00Hd8E]. It’s not exactly the topic I wanted to write about in
this book to begin with, but as I look at the other chapters around
here, it probably makes sense to write about it as well. Because
mental health is a huge problem in software engineering. Trust me,
I’ve been there as well. Of course there are also physical problems
because we sit too much, but probably more prevalent are mental
health issues.

First of all, we have to agree to the fact that we are not machines.
We are humans. Our brain is just one of our organs and it can
be damaged. And the most common cause of brain damage is
excessive amounts of adrenalin and cortisone, two stress related
hormons. These hormons are great as they allowed us to suppress
pain and gain powers to fight off wild animals. But when exposed
to them for a long time, they seriously damage our bodies and
brains. And this frequently happens in software engineering. We
are constantly under pressure to deliver and do not have sufficient
time to calm down again. On the long term, this is a serious issue
as it causes burn-out and depression.

One thing you certainly have to be aware of are your work-
ing hours. Working more does not make you more produc-
tive. You might work overtime before an important deadline
and your adrenalin boost may help you with it. But this is no
sustainable working model. You’ll need some time to calm down
again. Working less might in fact make you more productive.
I usually work only 80% (= 33 hours a week in Switzerland)
because of this reason. Of course I’m in this lucky position
that I can afford to work less. Though some companies like

49. Mental health 432

Microsoft already experimented with a 4-day workweek as well,
[https://4dayweek.io/case-study/microsoft] Furthermore it is im-
portant that you don’t respond to emails and phone calls in your
free time [https://youtu.be/C4GOekfDrOQ].

There are several signs that you are at the brink of a burn-out
and you should take them seriously. The easiest issue to spot are
sleeping problems. This can be caused by too much adrenalin and
makes you feel awake all the time. However your body and brain
need some rest again to recover. In case you have serious sleeping
problems you should definitely visit a doctor and take a step down
at work.

Another reason is bad mood and mobbing at the work place. This
should be adressed by your boss right away. And if he doesn’t fix
it it’s time you look for another job. You probably can’t fix this on
your own and you’re only risking your mental health by staying
any longer. Even if you like your job, it’s not worth it. And chances
are that you’ll find another job that you like as well. I recommend
talking to some of your friends about your problems. Probably they
can pinpoint some of your problems and help you solve them. And
yeah, I’ve also been there. I also quit a job before because the mood
in the team was so bad and my boss wasn’t going to do anything
about it.

On the other hand, there are also plenty of things that can make
you feel better. Most notably if you have a good mood in your
team. This is something that cannot be overstated. People who like
working with their coworkers are less likely to suffer from mental
problems and won’t quit their job easily. It is said that already
the old romans figured out that a good moral and motivation is
important for their legions and a sense of humor was one of the
criteria to be accepted into their legions [?].

Furthermore a rewarding work is also very important to keep your
spirits high. For example if you frequently finish your tickets in
time and you are praised for it by your boss. On the other side it is

49. Mental health 433

very depressing if your tickets are too big to be finished and you are
constantly behind your schedule. This is a common issue in Agile
development [section ?]. Your work is only rewarding if your team
is realistic about how fast they can work.

50. Hiring and getting
hired

[The Software Craftsman (by Sandro Mancuso)], [Cracking the
Coding interview]

That’s themoment you’ve all been looking for yourwhole life. Your
first real job. The first position as a software engineer. But how do
you get there? What is the process behind getting hired? Or rather,
what should the process behind getting hired look like?

Hiring

Let’s say it frankly. Unfortunately, quite some job application
processes suck. There’s no other way to put it. And the problem
behind it is very simple. The application process is being led by a
manager who likes numbers. He thinks that 5 years of professional
Java development is a reasonable qualification. Even though there
are plenty of developers with more than 10 years of experience
who don’t manage to write reasonable code. They just never made
the effort to learn anything by themselves. They keep writing the
same old crappy code they did 10 years ago. Meanwhile someone
working for 3 different companies for 1 year each probably has
improved his programming skill significantly in the meantime.

Instead of the bulleted point lists of requirements, a company
should rather describe in whole sentences what they are doing and
who they are looking for.

Similarly for the interviews. It’s about getting to know each other
personally. This is a very hard task, but there’s no way around

50. Hiring and getting hired 435

it. This is why many companies hire psychologists to support the
HR processes. So, ask personal questions. What did you do at
your previous job? What were the challenges? How did you get
along with the previous work colleagues? There are hundreds such
questions and to none of them you will find an answer on the CV.
Make sure you don’t waste your time asking the standard Java
questions. How can I create a memory leak? Etc. And if you do,
make sure the Java version used for the questions is at least up to
date.

Instead do some pair programming during the interview. Let the
applicant bring his own laptop and give him internet access. He
should be working on his laptop the way he’s used to. It’s not about
testing his knowledge on the latest IDE or testing framework. It’s
about finding out whether he’s smart and sharing the same coding
values as you do. About having fruitful discussions on the code you
are just writing. It’s about simulating some real pair programming,
as you will do together if the applicant gets the job.

Search for applicants with that something extra. Developers who
are working on some open source project in their free time. There’s
hardly any better sign that someone is a very motivated and
possibly also a skilled programmer. Join one of these software
development groups, possibly sponsor an event. This is a great
opportunity to get to know other software developers and hire them
without the tedious application process.

Keep recruiting all the time. This is a difficult task as the number of
proficient programmers is too small to cover all the open positions.
Thus, you can’t be too picky about when you are hiring your new
team mate. If you have to hire someone under pressure, you’ll end
up hiring someone who is not quite up to the task.

50. Hiring and getting hired 436

Getting hired

Getting hired does not take quite as much know-how as hiring
someone. For the simple reason that you are getting invited
and mostly follow the hiring process. Yet at the same time you
should always stay aware that you are an equal partner during the
application procedure. If you don’t agree with something you may
very well just leave the recruiting process.

As already written above, it’s about getting to know each other.
Thus, you may also ask questions. In fact, you are expected to ask
questions. If you don’t know what else to ask, ask the developer
what he’s exactly working at and what kind of problems they are
facing. This is something to get started with.

You shouldn’t take the application process too serious. Just stay
yourself. They ask for 3 years of experience? Well, that’s what
they wish for. But in reality, 2 years are usually enough if your
application is otherwise convincing. Or if you’re living in an area
with few programmers around, which is basically all around the
globe.

Make yourself seen with your application. Mention all kind of open
source projects, blog posts and conferences you attended. This also
makes a good start for the interview.

51. Examples
// remove? Write a separate book with examples?

So far, there was fairly little code in this book. Now I’d like to
make one example, just to show you an application of some of the
things we learned. Once again, I want to have a simple real world
project. Assume we have a robot and we are going to give it some
instructions. It’s a smart robot that understands a lot of things, but
the general planning we have to do ourselves.

Apple pie

User story

Your father comes for dinner next Sunday and you want to make
him happy. Creamy apple pie makes him happy, for example.

Acceptance criteria: your father is happy

Acceptance test

Now let’s first write the acceptance test. If we invite our dad, he
has to say that he’s happy. We assume that he prints out his feelings
on the console. Thus, we can just check the console output.

51. Examples 438

1 # inside acceptance_tests/test_dinner.py

2 import subprocess

3

4 def test_dinner_makes_dad_happy():

5 p = serve_dinner_as_subprocess()

6 assert(contains_happy(p.stdout))

7

8 def serve_dinner_as_subprocess():

9 return subprocess.Popen(['Python', 'dinner.py'],

10 stdout=subprocess.PIPE,

11 stderr=subprocess.STDOUT,

12)

13

14 def contains_happy(lines):

15 for line in lines:

16 if "happy" in str(line):

17 return True

18 return False

That’s it. Wewon’t have to touch the acceptance test anymore until
the ticket is done. Note that I used the function contains to make
the test a little more flexible. Your dad might say other things as
well that we don’t care about.

The very first thing we do is running the test.

1 pytest acceptance_tests

And we see that it fails. That was to be expected, we didn’t imple-
ment anything so far. But it was still worth the few milliseconds
we spent here. There are better places where you can save time.

Implementation

Let’s start with the implementation. It’s a fairly artificial example,
so I can just make some assumptions. In the main function we

51. Examples 439

create the apple pie and have our dad eat it. The big part of the
work will be implementing the dad and the function to create the
apple pie.

Also note that the easiest solution would probably be buying an
apple pie from the next bakery. This would be a perfectly viable
solution to this task here. But let’s assume that we have to bake the
pie ourselves.

Or course we have to make several assumptions on how the apple
pie is to be implemented. Let’s start with the high level code.

1 apple_pie = create("apple_pie")

2 dad = Dad()

3 dad.eat(apple_pie)

Next we implement dad and then the create function.

1 from enum import Enum

2

3 class Flavor(Enum):

4 VERY_CREAMY = 1

5 SALTY = 2

6

7 class Dad():

8 def eat(food):

9 if food.name == "apple_pie" and food.flavor == Fa\

10 lvor.VERY_CREAMY

11 print("I’m so happy")

Note that the Flavor is neither inside the Dad, nor inside the
ApplePie class, as we have learned in the chapter on the solid
principles (ISP).

51. Examples 440

1 class ApplePie():

2 def __init__(self):

3 self.flavor = Flavor.VERY_CREAMY

4 self.name = "apple_pie"

5

6 def create(food_name):

7 food_dict = {"apple_pie" : ApplePie()}

8 return food_dict[food_name]

// etc. Either finish the example or remove it.

Paint

// DDD p.259

Idea: We want to define paint of certain color that we can mix with
each other and change its color accordingly. I would like to make
some comments to the implementation in the book mentioned
above. The code starts with a simple class paint and its variables.

1 class Paint:

2 V: float

3 R: int

4 Y: int

5 B: int

These member variables don’t have expressive names at all. They
are renamed to

51. Examples 441

1 class Paint:

2 Volume: float

3 Red: int

4 Yellow: int

5 Blue: int

This can be further improved. The red, yellow and blue values all
represent a color. They are all the same, while the volume has a
clearly different meaning. Thus we can refactor the RYB colors
into a dedicated object to fulfill the single responsibility principle.

1 class Paint:

2 volume

3 color

4 class Color:

5 Red

6 Yellow

7 Blue

So far so good. We made some smaller refactoring and the basic
data structure looks good to go. Now comes the very tricky
question: how should the syntax of mixing two colors look like?

1 # paint a, b, c

2 c = add(a,b)

3 c.add(a)

The first is the procedural #? Way, the second is the object-
oriented approach. Besides this fundamental question, we also
have to figure out what kind of values a and b should have after
this operation. Additionally, we also might want to find another
name than add.

First, I would like to answer the conceptual question. What happens
with a and b? This is a somewhat philosophical question and
without knowing the actual problem we’d like to solve there is no
clear answer. We can only reason about it.

51. Examples 442

1 def add(paint1, paint2):

2 Paint paint3

3 volume = paint1.volume + paint2.volume

4 Paint3.volume = volume

5 paint3.color.red = (Paint1.color.red* paint1.volume +\

6 Paint2.color.red* paint2.volume) / volume

7 paint3.color.yellow = (Paint1.color. yellow * paint1.\

8 volume + Paint2.color. yellow * paint2.volume) /volume

9 paint3.color.blue = (Paint1.color. blue * paint1.volu\

10 me + Paint2.color. blue * paint2.volume) / volume

11 return paint3

Now I see 3 different possibilities:

1. We leave paint1 and paint2 as is. We used a copy of the actual
paints and didn’t change the original paints.

2. We set the volume of both paints to 0. This is the equivalent of
mixing the two paints and being left with two empty canisters
containing no paint at all.

3. We set both paints to None. This would be somehow equiv-
alent to throwing the canisters away.

As I said, all of them are perfectly reasonable choices. It is up
to us to choose one of them, depending on what seems to be the
most appropriate choice for each case. This also has consequences
how we should call the add function and what the best way of
implementing is.

For the first option, we don’t change neither paint1 nor paint2.
Here it makes sense to call the function add or even define the +
operator if possible, in your programming language of choice. This
is a legitimate choice as we don’t expect add to change any of its
function arguments.

Let’s assume that we choose option 2 and we’re left with 2 empty
canisters of paint. Calling this function add is no longer an option.

51. Examples 443

Instead we could call it mix or mix_in. Additionally, we have to
deal with the question if we want to be more or less object oriented.
We do have the following options:

1 paint3 = mix(paint1, paint2)

2 paint1.mix_in(paint2)

Now this is a matter of choice. A whole generation of programmers
grew up hearing that the later option is the better one. It would be
more natural. But honestly, I don’t see why this is supposed to
be so super natural. As already seen, for case number 1 I clearly
prefer the non-OO solution, simply because we are used to the add
function not changing any function arguments while with the mix
function, we have to take a look at the definition in order to be
sure. Even here, I still opt for the first option. It just feels more
natural to me as the function is symmetric, while the OO solution
is asymmetric for no apparent reason.

The solution

1 paint3 = mix(paint1, paint2)

Has one drawback. It creates a new object and it changes both func-
tion arguments. Now this is a very unfortunate solution. Changing
one function argument is already bad enough and changing two is
even worse. Now one solution would be passing a list of paints,
paint3 = mix([paint1, paint2])

Reasonable programming dictates that all list elements are treated
equally and thus they are either all altered together or none at all.
Furthermore, we can implement a mix function for any number of
paints.

Still, in the end I’m preferring option 1 (not changing paint1 and
paint2) and implementing a simple add function. This follows
the general conventions and minimizes confusion. It follows the

51. Examples 444

Single Responsibility Principle as it only adds the two paints and
doesn’t alter anything else. Changing the volume of the function
arguments can be done in a separate step, if needed.

And sorry folks, my preferred solution is not object-oriented, other
than defining the pure data classes.

Part 10: Final remarks

52. About Copilot
The examples on Copilot shown throughout the code were all
very short. This was done deliberately. Not only for the sake of
keeping the problems easy to understand, but also in order to keep
the suggestions from Copilot under control. Just as for a human
developer, Copilot works best for incremental changes. It is not
able to read your mind (even though sometimes it feels like it) and
for complex changes it won’t be able to make a correct suggestion.
If there is a more difficult problem, Copilot frequently makes some
undesired suggestions. The solution is to break down the problem
into some smaller parts and maybe guide Copilot by writing the
beginning of the code, i.e. the definition of a function.

Here is an example with a list of books. In the function parse_-

line, Copilot suggested author, title = book.spilt(',') which
is wrong. It correctly anticipated that this list contains authors and
titles of book. But interestingly enough, it didn’t understand that
the first and last names of the authors were split by a comma. Only
after typing last_name, Copilot understood how the line should be
parsed.

1 books =["Rowling,J.K.,Harry Potter and the Philosopher's \

2 Stone",

3 "Tolkien,JRR.,The Lord of the Rings",

4 "Tolkien,JRR.,The Hobbit",

5 "Martin,George R.R.,A Game of Thrones",

6 "Martin,Robert C.,Clean Code",]

7

8 def parse_line(book):

9 last_name, first_name, title = book.split(',')

10 return f"{first_name} {last_name}: {title}"

52. About Copilot 446

11

12 print(parse_line(books[0]))

Copilot was also a help when writing this book, though for writing
text I like it way less than for coding. A lot of suggestions were
“simply wrong. But it was still a help to get some inspiration.” (The
quoted text was suggested by Copilot, the rest of the suggestion
was not useful at all.) When writing text it becomes even more
obvious that Copilot does not understand some things. For example
it claimed to have suggested a quote I would use at the beginning
of the book, but that was plain wrong. I didn’t use the quote at the
beginning of the book nor was it Copilot who came up with the
quote.

Furthermore Copilot makes a lot of boilerplate suggestions. For
exmaple it frequently suggests text like “This makes it easier to
understand.” which might be right, but it does not help the reader
of this book.

Copilot and this book

I used Copilot to write parts of this book. At times it was a help
to get some inspiration. For example I would have used the word
help instead of inspiration here (Copilot seems to like the word
“inspiration”whenwriting about itself). On the other hand, Copilot
also suggested a lot of nonsense. So it’s not like Copilot wouldmake
the job of an author obsolete any time soon. But it’s a great tool to
improve your writing.

Issues

Copilot is just some artificial neural network. It is not perfect, it
is no compiler and it doesn’t even know correct syntax. It’s “only”

52. About Copilot 447

really good with guessing code. Sometimes Copilot produces quite
some nonsense. For example, Copilot seems to have analyzed my
text and found a lot of ““‘py” text snippets. Therefore it suggested
to write this ““‘py” quite frequently at the end of a sentence. And
just nowCopilot is telling me that it learned not to do this anymore.
But this turned out to be wrong.

Some of the errors of Copilot & co. are very subtle. Chat GPT came
up with some fake suggestion containin wrong citations when it
was used in a legal case [https://www.legaldive.com/news/chatgpt-
fake-legal-cases-generative-ai-hallucinations/651557/].

Also when I was playing around, the code produced by Copilot
was sometimes wrong. Here is an example where I asked Copilot
to refactor some fairly trivial code.

1 def print_content():

2 print("********************")

3 print("hello")

4

5 # command to Copilot: move the print statements into a de\

6 dicated function

7 if __name__ == "__main__":

8 print("author: Marco Gähler")

9 print("********************")

10 print_content()

11

12 # new code:

13 def print_header():

14 print("********************")

15 print("author: Marco Gähler")

16 print("********************")

17

18 def print_content():

19 print("hello")

20

21 if __name__ == "__main__":

52. About Copilot 448

22 print_header()

23 print_content()

Here Copilot changed the order of the first two print statements.
Of course the order suggested by Copilot makes perfectly sense, but
it is still wrong as it changed the output.

And as I’m writing these lines, I also get the feeling that Copilot
has some narcistic traits. It wants me to write here that it is a great
tool.

Copilot and the future

Copilot is indeed a great tool. It was a great help writing this
book and the code examples. But it is far from perfect. I doubt
that it will completely replace software engineers and authors any
time soon. Though it may change the way we work. It is a great
source of “inspiration” (again: suggestion by Copilot) when you
don’t know what to write. And at times its suggestions are just
hillarious. What it can’t do is reading your mind. You first have
to give it some input. And even then it is sometimes hard to tell it
what you want to do. This is why you are still better off reading
this book and understanding the patterns explained here. Copilot
is not a replacement for your brain.

53. Further reading
I learned quite some things reading books and watching youtube
videos, even though not as much as I did when thinking about and
discussing code at work. The selection of books may be somewhat
biased by the algorithms used by Amazon and YouTube. There are
probably plenty of other good books and videos out there, I just
didn’t know about them. Here are the books that I read so far:

The Pragmatic Programmer 2nd edition (Thomas, Hunt) This book
is one of the inspirations to write my book here. It contains a lot
of general advice on software development, tough ultimately only
quite little of their recommendations made it into this book.

Clean code (Robert C Martin) The best seller. Uncle Bob explains
how good code should look like. I followed many of his rules, quite
some of them are in a similar way in this book.

Clean architecture (Robert C Martin) ?

Clean Agile (Robert C Martin) It’s a fairly brief explanation how
agile software development is supposed to work.

The Art or Readable Code (Boswell, Foucher)

Software Engineering at Google (Winters et al.) They write exten-
sively about testing at google. What else?

97 things every programmer should know (Kevlin Henney et al.)

Cracking the Coding Interview (Laakmann McDowell)

Design patterns (Gamma et. al) Probably one of themost influential
software engineering books ever. It explains how classes can be
combined to create some whole new functionality. Alternatively,
you can also watch some youtube videos about the topic.

Domain-Dirven Design (Eric Evans) Certainly worth a read. But a
tough one. Trying to understand what Evans wanted to explain

53. Further reading 450

made me understand a big deal and I learned a lot about the
fundamentals of programming. Even if some parts of the book are
clearly outdated.

Effective C++ (Scott Meyers) If you want to work with C++ this
book is certainly worth a read. You learn quite something about
the background and how to use the language. However, some parts
are outdated and it’s not a book for beginners.

Effective modern C++ (Scott Meyers) Scott explains the ideas
behind C++11 and 14. This is at the time of writing probably the
more useful book. But only for advanced C++ programmers.

Working with legacy code (Michael Feathers) This book is about
working with code that doesn’t have any tests and probably needs
some refactoring.

Refactoring 2nd edition (Martin Fowler) Simply a great book on
refactoring. The introductory example is simply amazing. Martin
takes an innocent looking function and applies some of his refac-
toring steps. In the end there is some code that is super smooth. It
has barely any indentations!

Software Engineering at google (Winters et al.)

BBV Cheat Sheet by Urs Enzler, https://en.bbv.ch/publikationen-
category/cheat-sheet-en/

Google Style Guide, https://google.github.io/styleguide/

And several youtube channels: @alexhyettdev, @ArjanCodes,
@ThePrimeTimeagen, @CodeOpinion, @derekbanas,
@TechWithTim, @ContinuousDelivery,

54. Outlook
“Programming is learned by writing programs.” ― Brian
Kernighan

Maybe you were surprised sometimes that there were so few code
examples. But I hope you understood that they are not required. I
wanted to explain fundamental concepts of software engineering.
I wanted to give you an overview of the most important things to
look out for. This should be a book that tells you the very basic
rules that make your code better. There are not so many. But they
are really important.

You might have realized that in software engineering for every
problem there are a million of possible solutions. Even when
writing these very simple examples in this book I have to reconsider
how to do it best. For you it must be even worse. I remember how I
was lost when I started programming. This book wants to help you.
It explains a lot of things you shouldn’t do or use. It’s restricting
you. I don’t want you to get lost because of all the posibilities you
have.

Soon comes the next big step. The real world. Writing code.
Finally, you are there. And I have to let you go. I could write
another book with code examples and explain why some code is
better than the other. But there are plenty such books and I doubt
I know better examples than the other authors do. Still, I hope that
you’ll get back to this book once in a while if you seek fundamental
advice.

Your next step will be to apply all the things you learned on your
journey so far. Write code. As much as you can. And always try
to improve it. How can you make it easier to understand? How
should you break that class into pieces? How is the test coverage

54. Outlook 452

doing? There are so many things to look out for. There are so
many obstacles along the way. Find a good programmer to help
you overcome them. Or even better, do an internship. (But make
sure the company writes tests before you accept the job.) Talking
with other programmers is important to understand how you can
change your code to make it better.

I hope you learned a lot of things that will help you in your life as
a software engineer. Good luck!

Marco

55. Frequently used
Abbreviations

API Application Programmable Interface BDD Behavior Driven
Development CD Continuous Delivery CI Continuous Integra-
tion DAMP Descriptive And Meaningful Phrases DB Database DI
Dependency injection GUI Graphical User Interface MR Merge
Request OO Object-Oriented QA Quality Assurance TDD Test-
Driven Development YAGNI You Aren’t Going Need It

	Table of Contents
	1. Introduction to Software Engineering
	Getting started

	2.
	3. One sentence summary
	4. The short story behind this book
	Thanks to

	5. Preface
	Who this book is for
	Writing this book
	A word about Copilot

	6. Software Engineering
	The Life of a Software Engineer
	Writing correct code
	Cleaning up code
	Writing code for a purpose
	The five rules of software engineering

	7. Good code: a list of rules
	The Zen of Python

	8. Understandable code
	How Humans Think
	Spaghetti code
	Examples
	Copilot

	9. Single Responsibility Principle
	Do not Repeat Yourself
	Advantages of the SRP
	Drawbacks of the SRP

	10. Levels of abstraction
	Real world example
	Programming Example
	The Abstraction Layers
	Summary

	11. Interfaces
	Real-world Interfaces
	Code Interfaces
	APIs
	Orthogonality
	Copilot

	12. Naming
	The importance of Names
	How to name things
	Naming Antipatterns
	Copilot

	13. Functions
	Do one thing only
	Temporal Coupling
	Number of Arguments
	Output arguments
	Return Values
	Summary
	Copilot

	14. Classes
	Data Classes and Structs
	Private or Public
	Different Kinds of Classes
	Functions vs. Methods
	Constructors and Destructors
	Getter and Setter Methods
	Coupling and Cohesion
	Static Expression
	Drawbacks of Classes
	Conclusions
	Copilot

	15. Inheritance
	Two Types of Inheritance
	Drawbacks of Inheritance
	Advantages of Inheritance
	Inheritance and Composition
	Conclusions

	16. Data Types
	Lists
	Enums
	Booleans
	Strings
	Dictionaries
	Trees
	Pointers

	17. Properties of Variables
	Compile-time constant
	Runtime Constant
	Mutable Variables
	Member Variables
	Static Variables
	Global Variables
	Comparison of Variable Properties

	18. Introduction to Testing
	A short story about tests
	Test Example
	General Thoughts about Tests
	Number of test cases
	Stages of a Test
	Problematic Tests
	The Beyoncé Rule
	Exceptions and Tests
	Not Automatable Tests

	19. Types of Tests
	Unit Tests
	Functional Tests
	Other Kinds of Tests
	When to run Tests
	Who should write Tests?
	The Testing Pyramid

	20. Writing Better Code with Tests
	Unit Tests
	Integration and Functional Tests
	Testing Existing Code
	Assertions
	Test Driven Development
	Stubs, Fakes, and Mocks
	Summary
	Copilot

	21. SOLID principles
	Single Responsibility Principle
	Open Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle
	Summary

	22. Software Engineering Principles
	Divide and Conquer
	Increase Cohesion
	Reduce coupling
	Increase abstraction
	Increase Reusability
	Design for flexibility
	Anticipate Obsolescence
	Design for Testability
	Pay Now or Pay More Later

	23. Programming Paradigms
	Object-Oriented Programming
	Procedural programming
	Functional Programming
	Conclusions
	Copilot

	24. Programming Languages
	Java and C++
	Existing Programming Languages
	Code Examples
	Python
	C++
	Copilot

	25. Physical Laws of Code
	Entropy
	Correlation
	Quality

	26. Bugs, Errors, Exceptions
	Syntax Errors
	Bugs
	Exceptions

	27. Complexity
	Complexity of Code
	Estimating complexity
	Single line complexity
	Black magic code

	28. Dependencies
	The Early Days
	The dependency graph
	Breaking up Dependencies
	Circular Dependencies

	29. Decoupling
	30. Software Architecture
	The end of Architecture
	Designing Interfaces
	Separate Libraries

	31. Design Patterns
	Factory

	32. Domain Driven Design
	Ubiquitous Language
	The Domain Model
	Domain Specific Language
	Domain Boundaries
	Building Blocks of DDD

	33. 3rd party software
	34. Refactoring Fundamentals
	There will be change
	Don't Let Your Code Rot
	Levels of Refactoring
	When to Refactor
	What to Refactor
	Refactoring Process

	35. Refactoring Techniques
	Where to start
	Breaking classes
	Renaming
	Scratch refactoring [WELC p. 212]
	Extract function
	Dependency Injector
	Copilot

	36. Refactoring Legacy Code
	No Useful Interfaces
	No Tests
	Extremely Long Functions
	Seams
	Sketches
	How do I get the Code under Test?
	Sprout Method

	37. Performance Optimization
	No Optimization Needed
	Optimization Maybe Needed
	Optimizing Certainly Needed

	38. Comments
	Bad comments
	Useful comments
	Commenting magic numbers
	Summary
	Copilot

	39. Logging
	40. Data files
	CSV
	JSON
	XML
	HDF5
	Databases
	Custom file format

	41. Setting up a project
	Project Folder

	42. Tools
	Version control software
	Command line
	IDE
	Continuous Integration
	Debugger
	Profiler
	Formatter
	Code quality checker
	Pip, cmake
	Ticketing system
	Wiki
	Docstring

	43. Working in teams
	Team structure
	Developers work
	Communication
	Working with customers

	44. Code review
	Drawbacks
	Conclusions

	45. Agile
	Problems of Waterfall
	Agile was born
	Work planning
	Quality Assurance
	The Iron Cross
	Sprints
	Becoming agile

	46. Requirements Engineering
	Stakeholders
	Goals, Context and Scope
	Use-Case Model

	47. Planning
	Planning code

	48. DevOps
	The early 2000s
	Benefits of DevOps

	49. Mental health
	50. Hiring and getting hired
	Hiring
	Getting hired

	51. Examples
	Apple pie
	Paint

	52. About Copilot
	Copilot and this book
	Issues
	Copilot and the future

	53. Further reading
	54. Outlook
	55. Frequently used Abbreviations

